Emission Control System

General Information

Description

Components	Function	Remarks
Crankcase Emission System - Positive Crankcase Ventilation (PCV) valve	HC reduction	Variable flow rate type
Evaporative Emission System - Evaporative emission canister - Purge Control Solenoid Valve (PCSV)	HC reduction HC reduction	Duty control solenoid valve
Exhaust Emission System - MFI system (air-fuel mixture control device) - Three-way catalytic converter		Heated oxygen sensor feedback type Monolithic type

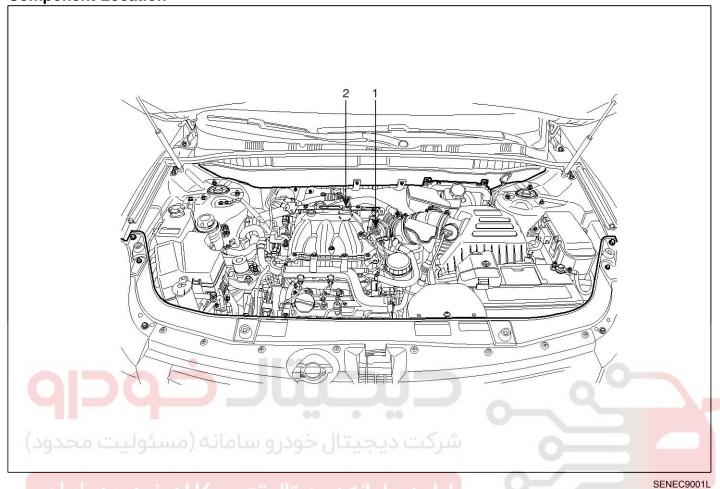
Specifications

▷ Specification

Item	Specification
Coil Resistance (Ω)	19.0 ~ 22.0 [20°ℂ (68°F)]

Tightening Torques

Item	N-m	kgf.m	lbf.m
Positive Crankcase Ventilation Valve	8.0 ~ 12.0	0.8 ~ 1.2	6.0 ~ 8.0

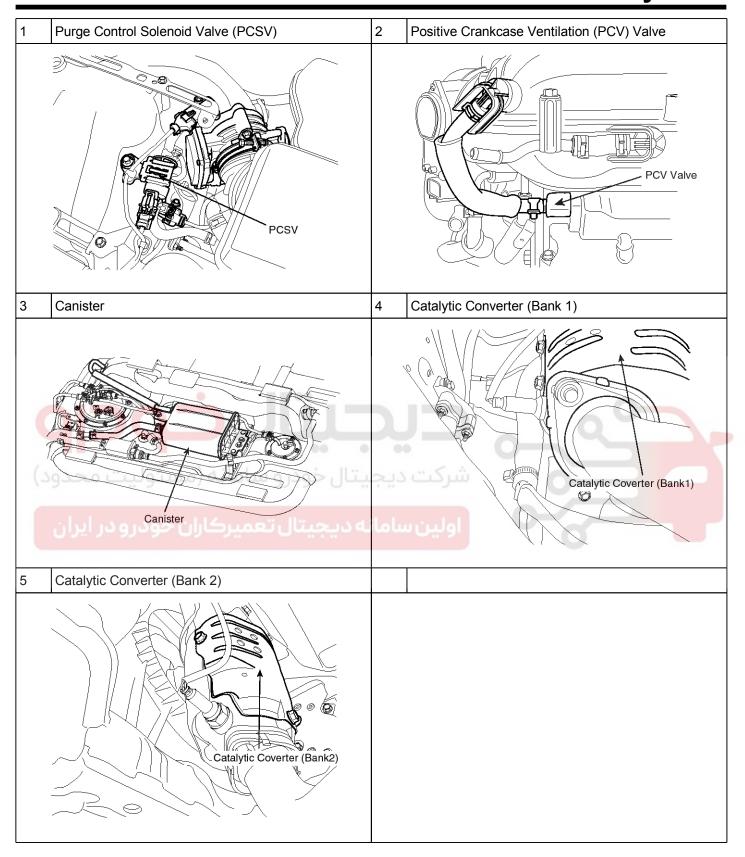

Troubleshooting

(3932 Symptom Suno) 40	Suspect area	Remedy
	Vacuum hose disconnected or damaged	Repair or replace
Engine will not start or hard to start	Malfunction of the Purge Control Solenoid Valve	Repair or replace
	Vacuum hose disconnected or damaged	Repair or replace
	Malfunction of the PCV valve	Replace
Rough idle or engine stalls	Malfunction of the evaporative emission canister purge system	Check the system; if there is a problem, check related components parts
Excessive oil consumption	Positive crankcase ventilation line clogged	Check positive crankcase ventilation system

General Information

EC-3

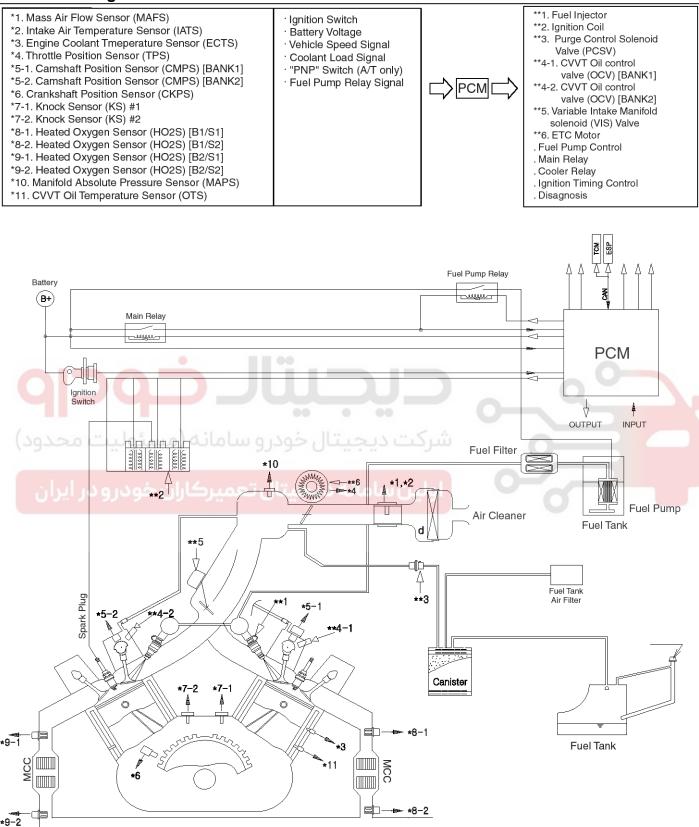
Component Location


1. Purge Control Solenoid Vavle (PCSV)

2. PCV Valve

3. Canister

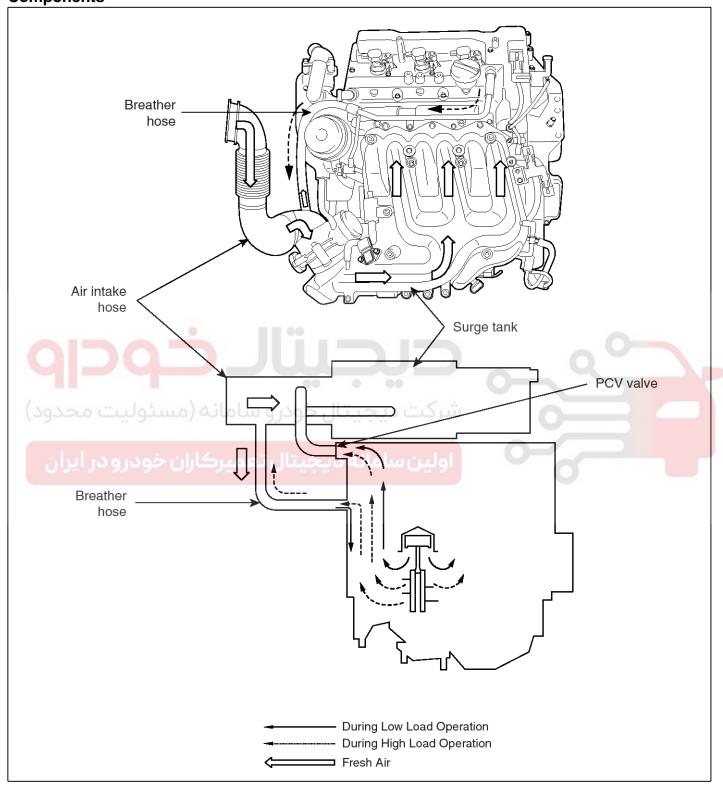
- 4. Catalytic Converter (Bank1)
- 5. Catalytic Converter (Bank2)


Emission Control System

General Information

EC-5

Schematic Diagram



LEKG022A

Emission Control System

Crankcase Emission Control System

Components

EERF086B

Crankcase Emission Control System

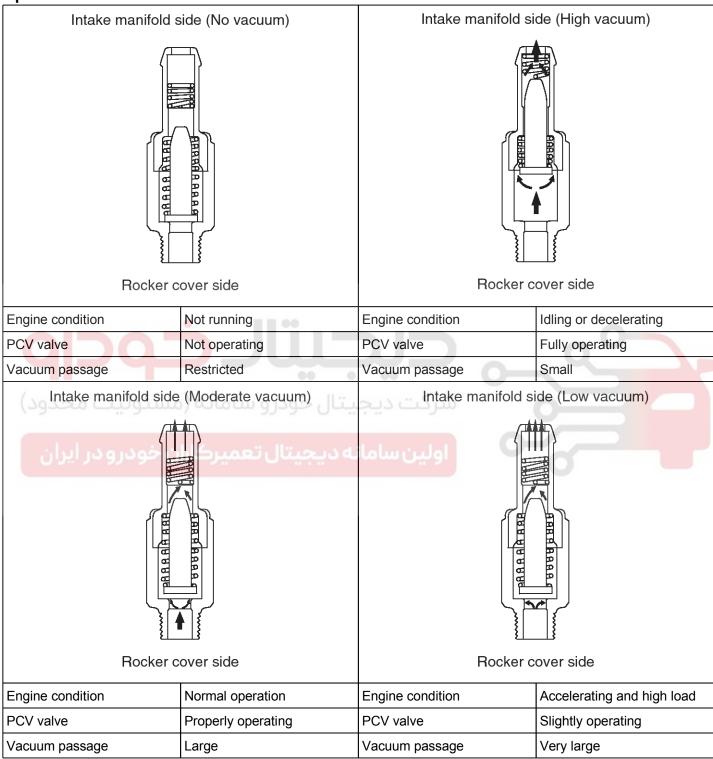
EC-7

Inspection

- Disconnect the ventilation hose from the positive crankcase ventilation (PCV) valve. Remove the PCV valve from the rocker cover and reconnect it to the ventilation hose.
- 2. Run the engine at idle and put a finger on the open end of the PCV valve and make sure that intake manifold vacuum can be felt.

MOTICE

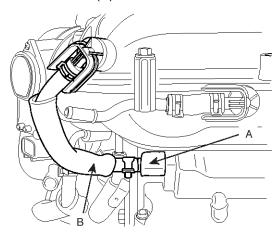
The plunger inside the PCV valve will move back and forth.



Emission Control System

Positive Crankcase Ventilation (PCV) Valve

Operation

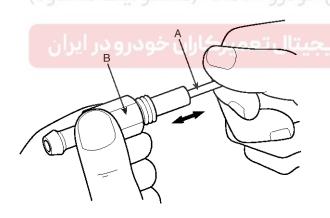


Crankcase Emission Control System

EC-9

Removal

1. Remove the valve pad (A) and disconnect the vacuum hose (B).



EERF600I

2. Remove the PCV Valve.

Inspection

- 1. Remove the PCV valve.
- 2. Insert a thin stick(A) into the PCV valve(B) from the threaded side to check that the plunger moves.
- 3. If the plunger does not move, the PCV valve is clogged. Clean it or replace.

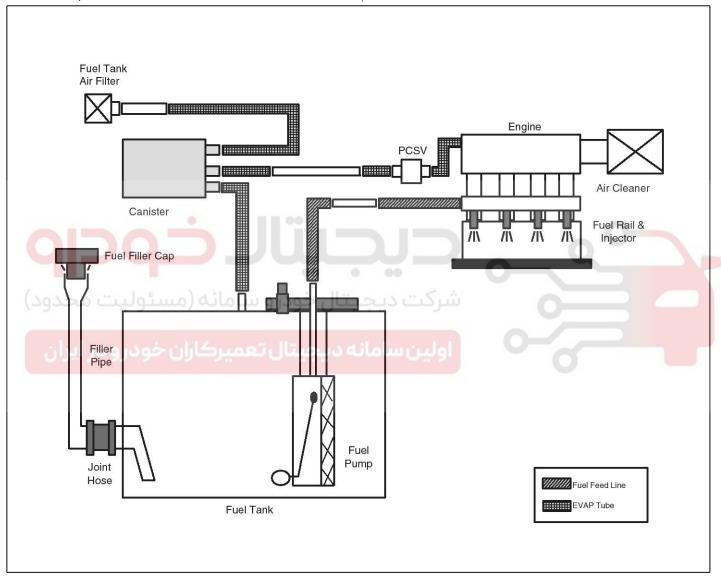
EERF600J

Installation

Install the PCV valve and tighten to the specified torque.

PCV Valve installation:

7.8 \sim 11.8 N.m (0.8 \sim 1.2 kgf.m, 5.8 \sim 8.7lb-ft)


Emission Control System

Evaporative Emission Control System

Description

Evaporative Emission Control System prevents fuel vapor stored in fuel tank from vaporizing into the atmosphere. When the fuel evaporates in the fuel tank, the vapor passes through vent hoses or tubes to the canister filled with charcoal and the canister temporarily holds the vapor in the charcoal.

If ECM determines to draw the gathered vapor into the combustion chambers during certain operating conditions, it will use vacuum in intake manifold to move it.

SENEC9002L

Canister

Canister is filled with charcoal and absorbs evaporated vapor in fuel tank. The gathered fuel vapor in canister is drawn into the intake manifold by the ECM/PCM when appropriate conditions are set.

Purge Control Solenoid Valve (PCSV)

Purge Control Solenoid Valve (PCSV) is installed in thepassage connecting canister and intake manifold. It is aduty type solenoid valve and is operated by ECM/PCM signal. To draw the absorbed vapor into the intake manifold, the ECM/PCM will open the PCSV, otherwise the passage remains closed.

Evaporative Emission Control System

EC-11

Fuel Filler Cap

A ratchet tightening device on the threaded fuel filler cap reduces the chances of incorrect installation, which would seal the fuel filler. After the gasket on the fuel filler cap and the fill neck flange contact each other, the ratchet produces aloud clicking noise indicating the seal has been set.

Inspection

[Evaporative Emission Control System]

- 1. Disconnect the vacuum hose from the throttle body, and connect a vacuum pump to the vacuum hose.
- Check the following points when the engine is cold [engine coolant temperature 60°C(140°F) or below] and when it is warm [engine coolant temperature 80°C(176°F) or higher].

WHEN ENGINE IS COLD

Engine operating c- ondition	Applied vacu- um	Result
Idling	50 kPa	Vacuum is held
3,000 rpm	(7.3 psi)	vacuum is neid

WHEN ENGINE IS WARM

Engine operating c- ondition	Applied vacu- um	Result
درو در ایران Idling	50 kPa (7.3 psi)	Vacuum is held
Within 3 minutes after engine start at 3,0 00 rpm	Try to apply vacuum	Vacuum is released
After 3 minutes have passed after engine start at 3,000 rpm	50 kPa (7.3 psi)	Vacuum will be held momentar- ily, after which, it will be releas- ed

[Purge Control Solenoid Valve (PCSV)]

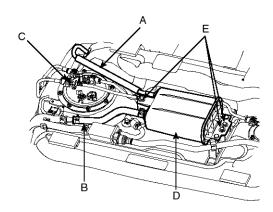
MNOTICE

When disconnecting the vacuum hose, make an identification mark on it so that it can be reconnected to its original position.

- 1. Disconnect the vacuum hose from the solenoid valve.
- 2. Detach the harness connector.
- 3. Connect a vacuum pump to the nipple which is connected to intake manifold.
- 4. Apply vacuum and check when voltage is applied to the PCSV and when the voltage is discontinued.

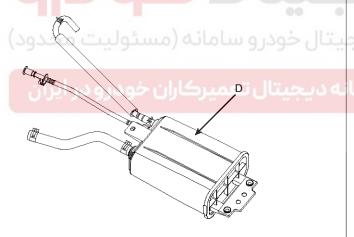
Battery voltage	Normal condition
When applied	Vacuum is released
When discontinued	Vacuum is maintained

Measure the resistance between the terminals of the solenoid valve.


PCSV coil resistance(Ω): 19.0 ~ 22.0 [20°C (68°F)]

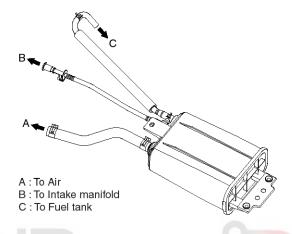
Emission Control System

Canister


Removal

- 1. Remove the fuel tank. (Refer to group FL)
- 2. Disconnect the vacuum hoses (A,B) and tube quick-connector (C).

SENEC7003L


3. Remove the canister assembly (D) with unscrewing three mounting bolts (E).

SENEC7004L

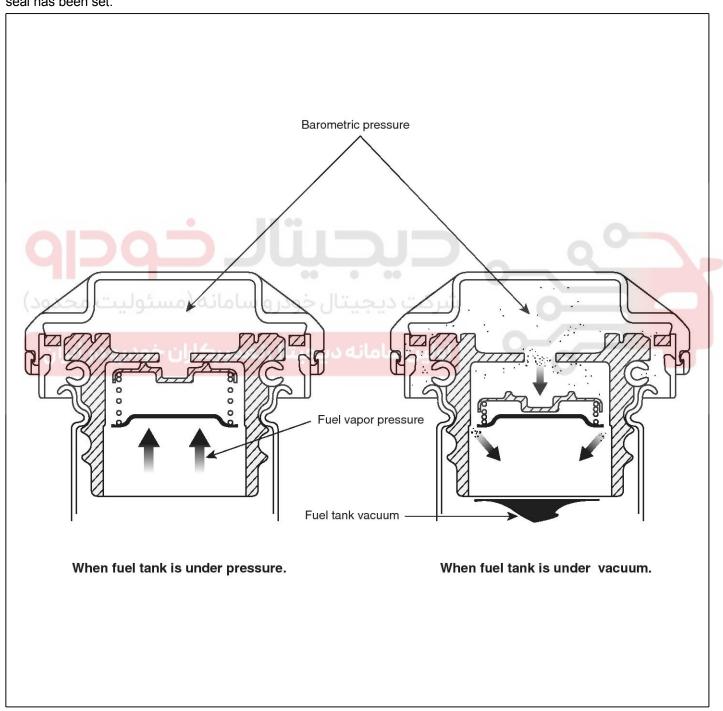
Inspection

- 1. Look for loose connections, sharp bends or damage to the fuel vapor lines.
- 2. Look for distortion, cracks or fuel damage.
- 3. After removing the canister, inspect for cracks, damage or saturated canister.

SENEC7005L

Installation

 Install the canister according to the reverse order of "REMOVAL" procedure.

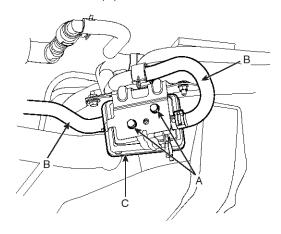

Evaporative Emission Control System

EC-13

Fuel Filler Cap

Description

A ratchet tightening device on the threaded fuel filler cap reduces the chances of incorrect installation, which would seal the fuel filler. After the gasket on the fuel filler cap and the filler neck flange contact each other, the ratchet produces a loud clicking noise indicating the seal has been set.

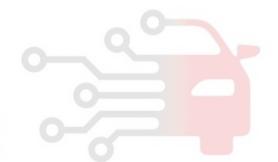

LEGE015A

Emission Control System

Fuel Tank Air Filter

Replacement

- 1. Lift the vehicle.
- 2. Unfasten two mounting bolts (A) and disconnect the air filter hoses (B).



SENEC7006L

- 3. Remove the canister air filter (C).
- 4. Install a new canister air filter.

شرکت دیجیتال خودرو سامانه (مسئولیت محدود)

اولین سامانه دیجیتال تعمیرکاران خودرو در ایران

Exhaust Emission Control System

EC-15

Exhaust Emission Control System

Description

Exhaust emissions (CO, HC, NOx) are controlled by acombination of engine modifications and the addition ofspecial control components.

Modifications to the combustion chamber, intake manifold, camshaft and ignition system form the basic control system.

These items have been integrated into a highly effective system which controls exhaust emissions while maintaining good driveability and fuel economy.

Air/fuel Mixture Control System [Multiport Fuel Injection (MFI) System]

This in turn allows the engine to produce exhaust gases of the proper composition to permit the use of a three way catalyst. The three way catalyst is designed to convert the three pollutants (1) hydrocarbons (HC), (2) carbon monoxide (CO), and (3) oxides of nitrogen (NOx) into harmless substances. There are two operating modes in the MFI system.

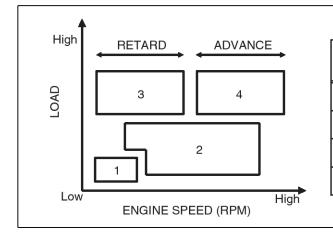

- 1. Open Loop air/fuel ratio is controlled by information programmed into the ECM.
- 2. Closed Loop air/fuel ratio is adjusted by the ECM based on information supplied by the oxygen sensor.

Emission Control System

CVVT (Continuously Variable Valve Timing) System

Description

SHDEC6106N


The CVVT (Continuously Variable Valve Timing) which is installed on the exhaust camshaft controls intake valve open and close timing in order to improve engine performance.

The intake valve timing is optimized by CVVT system depending on engine rpm.

This CVVT system improves fuel efficiency and reduces NOx emissions at all levels of engine speed, vehicle speed, and engine load by EGR effect because of valve over-lap optimization.

The CVVT changes the phase of the intake camshaft via oil pressure.

It changes the intake valve timing continuously.

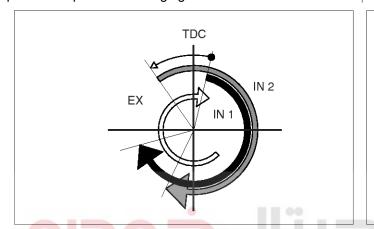
Driving Condition	Intake Valve Timing	Effect
Light load (1)	Retard	Stable combustion
Part load (2)	Advance	Enhanced fuel economy and exhaust emissions
High load& Low rpm (3)	Advance	Enhanced torque
High load& High rpm (4)	Retard	Enhanced Power

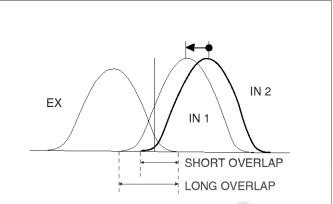
LEIF001Q

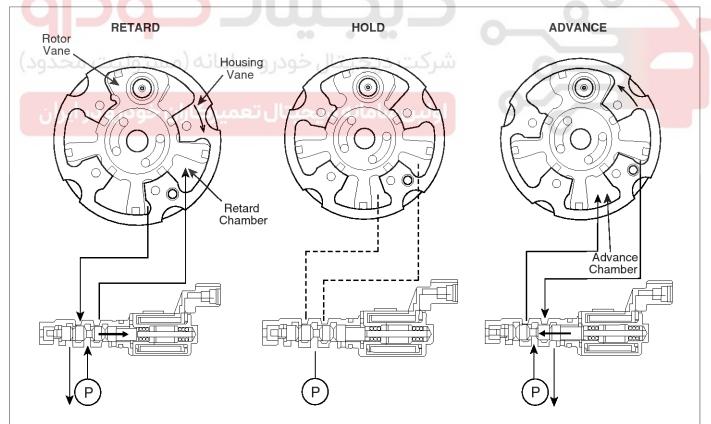
Exhaust Emission Control System

EC-17

Operation


The CVVT system makes continuous intake valve timing changes based on operating conditions.


Intake valve timing is optimized to allow the engine to produce maximum power.


Cam angle is advanced to obtain the EGR effect and reduce pumping loss. The intake valve is closed quickly to reduce the entry of the air/fuel mixture into the intake port and improve the changing effect.

Reduces the cam advance at idle, stabilizes combustion, and reduces engine speed.

If a malfunction occurs, the CVVT system control is disabled and the valve timing is fixed at the fully retarded position.

UEBG014A

Emission Control System

- 1. The above figure shows the relative operation structures of the housing vane to the rotor vane.
- 2. If the CVVT is held a certain control angle, to hold this state, oil is replenished as much as oil leaks from the oil pump.

The OCV (Oil-flow Control Valve) spool location at this time is as follows.

Oil pump \to Advance oil chamber (Little by little open the inflow side to the advance oil chamber) \to Almost close the drain side

Note that a difference may exist in the position according to the engine running state (rpm, oil temperature, and oil pressure).

