General Information

Specification

Fuel Delivery Systemsensor circuits

Items		Specification		
Fuel Injection System Type		Common Rail Direc	Common Rail Direct Injection (CRDI)	
Fuel Return System Type		Return	type	
Fuel Pressure	Max. Pressure	1,600	bar	
Fuel Tank	Capacity	78 lit. (20.6 U.S.ga	ıl., 17.2 Imp.gal.)	
Fuel Filter	Туре	High pressure type (E	Built in engine room)	
Link Dranoura Fuel Dur	Туре	Mechanical, Plunger Pumping Type		
High Pressure Fuel Pun	Driven by	Timing chain		
	Туре	Electrical, in	i-tank type	
Low Pressure Fuel Purr	Driven by	Electric motor		
Sensors Mass Air Flow Sensor (MAFS) D Type: Hot-Film Type Specification		Intake Air Temperature S MAFS] ▷ Type: Thermistor type ▷ Specification	Sensor (IATS) #1 [Built Ir	
* At intake air temperature = 20° (68°F)		Temperature [°C(°F)]	Resistance(^{kΩ})	
Air Flow (kg/h) Frequency (kHz)		-40(-40)	35.14 ~ 43.76	
8.0	1.94 ~ 1.96	-20(-4)	12.66 ~ 15.12	
10.0	1.98 ~ 1.99	0(32)	5.12 ~ 5.89	
15.0	2.06 ~ 2.07	20(68)	2.29 ~ 2.55	
75.0	2.72 ~ 2.75	40(104)	1.10 ~ 1.24	
160.0	3.36 ~ 3.41	60(140)	0.57 ~ 0.65	
310.0	4.44 ~ 4.53	80(176)	0.31 ~ 0.37	
640.0	7.66 ~ 8.01			
800.0	10.13 ~ 11.17	Boost Pressure Sensor (BP	'S)	
* At intake air temperature =	-15℃(5°F) or 80℃(176°F)	▷ Type: Piezo-resistive pres	ssure sensor type	
Air Flow (kg/h)	Frequency (kHz)	Specification	1	
10.0	1.97 ~ 1.99	Pressure (kPa)	Output Voltage (V)	
75.0	2.71 ~ 2.76	32.5	0.5	
160.0	3.34 ~ 3.43	70.0	1.02 ~ 1.17	
310.0	4.39 ~ 4.58	140.0	2.13 ~ 2.28	
		210.0	0.05 0.40	

210.0

270.0

284.0

FL-3

WWW.DIGITALKHODRO.COM

 $3.25 \simeq 3.40$

 $4.20 \simeq 4.35$

4.5

021-62999292

Fuel System

FL-4

- Intake Air Temperature Sensor (IATS) #2 [Built In BPS]
- \triangleright Type: Thermistor type
- ▷ Specification

Temperature [°C(°F)]	Resistance(^{kΩ})
-40(-40)	40.93 ~ 48.35
-20(-4)	13.89 ~ 16.03
0(32)	$5.38 \sim 6.09$
20(68)	2.31 ~ 2.57
40(104)	1.08 ~ 1.21
60(140)	0.54 ~ 0.62
80(176)	0.29 ~ 0.34

Engine Coolant Temperature Sensor (ECTS)

- ▷ Type: Thermistor type
- \triangleright Specification

Temperature [°C(°F)]	Resistance(^k Ω)
-40(-40)	48.14
-20(-4)	14.13 ~ 16.83
0(32)	5.79
20(68)	2.31 ~ 2.59
40(104)	1.15
60(140)	0.59
80(176)	0.32

Camshaft Position Sensor (CMPS)

- ▷ Type: Hall effect type
- ▷ Specification

Level	Output Pulse (V)
High	5
Low	0
Item	Specification

Air Gap (mm)	0.5 ~ 1.5

- Crankshaft Position Sensor (CKPS)
- \triangleright Type: Magnetic field sensitive type
- \triangleright Specification

Items	Specification
Coil Resistance (Ω)	774 ~ 946 [20°C(68°F)]
Air Gap (mm)	0.5 ~ 1.5

Rail Pressure Sensor (RPS)

 $\,\triangleright\,$ Type: Piezo-resistive pressure sensor type

 \triangleright Specification

Condition	Rail pressure (bar)	Output Voltage (V)
ldle	$200 \sim 300$	0.9 ~ 1.2
3,000 rpm	$450 \sim 650$	1.5 ~ 1.9

Fuel Temperature Sensor (FTS)

- ▷ Type: Thermistor type
- Specification

Temperature [°C(°F)]	Resistance(^k ^Ω)
-10(14)	8.64 ~ 10.15
20(68)	2.35 ~ <mark>2.65</mark>
80(176)	0.31 ~ 0.33
120 (248)	0.11 ~ 0.12

General Information

Lambda Sensor

- ▷ Type: Zirconia (ZrO2) Type
- ▷ Specification

[Pumping Current]

λ Value (A/F Ratio)	Pumping Current (A)
0.65	-2.2
0.7	-1.8
0.8	-1.1
0.9	-0.5
1.01	0
1.18	0.33
1.43	0.67
1.7	0.94
2.42	1.38
Air (Atmosphere)	2.54

[Heater Resistance]

Temperature [[°] C([°] F)]	Heater Resistance (Ω)	
20(68)	2.4 ~ 4.0	•

- Accelerator Position Sensor (APS)
- ▷ Type: Potentiometer type
- ▷ Specification

Pedal Position	Output Voltage(V) [Vref = 5.0V]	
Feudi Fosition	APS1	APS2
Released	0.7 ~ 0.8	$0.275 \simeq 0.475$
Fully depressed	3.8 ~ 4.4	1.75 ~ 2.35

Exhaust Gas Temperature Sensor (EGTS) #1 For VGT [With CPF]

- ▷ Type: Thermistor type
- ▷ Specification

Temperature [°C(°F)]	Resistance(^k Ω)
100(212)	289.0 ~ 481.0
300(572)	5.30 ~ 6.61
600(1,112)	$0.35 \sim 0.38$
900(1,652)	0.08 ~ 0.09

Exhaust Gas Temperature Sensor (EGTS) #2 For CPF [With CPF]

- ▷ Type: Thermistor type
- ▷ Specification

Temperature [°℃(°F)]	Resistance(^k Ω)		
100(212)	289.0 ~ 481.0		
300(572)	5.30 ~ 6.61		
600(1,112)	$0.35 \sim 0.38$		
900(1,652)	0.08 ~ 0.09		

Differential Pressure Sensor (DPS) [With CPF]

 \triangleright Type: Piezo-electricity type

▷ Specification: Vout = (4.5 - 1.0) / 100 * △P + 1.0 (V)

Differential Pressure [△ P] (kPa)	Output Voltage (V	
0	1	
10	1.35	
20	1.7	
30	2.05	
40 شىركىت د	2.4	
50	2.75	
	3.1	
70	3.45	
80	3.8	
90	4.15	
100	4.5	

Water Sensor

▷ Specification

Item	Specification		
Warning Level (cc)	$53\sim 63$		

Fuel System

021-62999292

FL-6

Actuators

Injector

- Number: 6
- ▷ Type: Piezo injector
- \triangleright Specification

Items	Specification		
Component Resistance(kΩ)	150 ~ 250 [20℃(68°F)]		
Operating Voltage (V)	100 ~ 200		

Fuel Pressure Regulator Valve

 \triangleright Specification

Item	Specification
Coil Resistance (Ω)	$2.9 \sim 3.15\Omega$ [20°C(68°F)]

Rail Pressure Regulator Valve

 \triangleright Specification

Items	Specification		
Coil Resistance (Ω)	<mark>3.42</mark> ~ 3.78Ω [20℃(68°F)]		
Operating Current (A)	0~1.7		
(101201"11011	a) ailalu a vois. Il		

Electric EGR Control Valve

▷ Specification

Item	Specification	
Coil Resistance (Ω)	$7.3 \sim 8.3\Omega \ [20^{\circ}C(68^{\circ}F)]$	

Throttle Control Actuator [With CPF]

- ▷ Type: Duty control motor type
- ▷ Specification

Duty (%)	Throttel Valve Position			
5	Open			
5~94	Normal operation (Partialy open in proportion to duty value			
94	Closed			
94 ~ 95	Maintaining the last valid position			
95 ~ 97	Fully closed			

Variable Swirl Control Actuator

▷ Type: Motor driven (including Position Sensor)

 \triangleright Specification

[Motor]

Item	Specification		
Coil Resistance (Ω)	$3.4 \simeq 4.4 \Omega [20^{\circ}C(68^{\circ}F)]$		

[Position Sensor]

Item	Specification	
Coil Resistance (Ω)	3.44 ~ 5.16 ^k Ω [20 ℃(68°F)]	

Electric VGT Control Actuator

▷ Type: DC motor driven

General Information

FL-7

Service Standard

Service Standard					
Items		Specification			
	A/CON OFF	Neutral,N,P-range	e	720 ± 100rpm	
Basic Idle rpm (After warm up)	ACONOFF	D-range		720 ± 100rpm	
	A/CON ON	Neutral,N,P-range	e	720 ± 100rpm	
	ACON ON	D-range		720 \pm 100rpm	
Tightening Torques Engine Control System					
	Item	Kgf.m	N.m	lb-ft	t
ECM installation bolts		0.8 ~ 1.2	7.8 ~ 11	1.8 5.8 ~ 8	3.7
ECM bracket installation bolts	s/nuts	0.4 ~ 0.6	3.9 ~ 5	5.9 2.9 ~ <i>2</i>	4.3
Mass air flow sensor clamp in	stallation screw	0.3 ~ 0.5	2.9~4	.9 2.2 ~ 3	3.6
Mass air flow sensor installati	on bolts	0.4 ~ 0.6	3.9 ~ 5	5.9 2.9 ~ ²	4.3
Boost pressure sensor installa	ation bolts	0.7 ~ 1.1	6.9 ~ 10	0.8 5.1 ~ 8	3.0
Engine coolant temperature s	ensor installation	4.0 ~ 5.5	39.2 ~ 5	i 4.0 28.9 ~ 3	39.8
Camshaft position sensor inst	allation bolt	1.0 ~ 1.2	9.8 ~ 11	1.8 7.2~8	3.7
Crankshaft position sensor ins	stallation bolt	1.0 ~ 1.2	9.8 ~ 11	1.8 7.2 ~ 8	3.7
Lambda sensor installation		4.0 ~ 6.0	39.2 ~ 5	i8.9 28.9 ~ 4	43.4
Exhaust gas temperature sen	sor (For CPF) installation	4.0 ~ 5.0	39.2 ~ 4	9.1 28.9 ~ 3	36.2
Exhaust gas temperature sensor (For VGT) installation		4.0 ~ 5.0	39.2 ~ 4	9.1 28.9 ~ 3	36.2
Di <mark>fferential pressure sensor</mark> b	racket installation bolt	0.4 ~ 0.6	3.9 ~ 5	5.9 2.9 ~ 4	4.3
Throttle control actuator [With	CPF] installation nuts	1.0 ~ 1.2	9.8 ~ 11	1.8 7.2 ~ 8	3.7
Electric EGR control valve installation bolts (Valve ↔ EGR Cool- er)		2.0 ~ 2.7	19.6 ~ 2	26.5 14.5 ~ 1	19.5
Electric EGR control valve ins	stallation nuts (Valve ↔ EGR Pipe	e) 3.0 ~ 3.5	29.4 ~ 3	34.3 21.7 ~ 2	25.3
Variable swirl control actuator	installation bolts	1.0 ~ 1.2	9.8 ~ 11	1.8 7.2 ~ 8	3.7
Variable swirl control actuator	bracket installation bolts	1.0 ~ 1.2	9.8 ~ 11	1.8 7.2 ~ 8	3.7
Glow control module installati	on bolts	0.7 ~ 1.1	6.9 ~ 10	0.8 5.1 ~ 8	3.0
Glow plug installation		0.8 ~ 1.1	7.8 ~ 10.8 5.8 ~		3.0
Fuel Delivery System					
	Item	Kgf.m	N.m	lb-ft	t
Fuel tank band installation nu	ts	4.0 ~ 5.5	39.2 ~ 5	i 4.0 28.9 ~ 3	39.8
Accelerator pedal module inst	tallation nuts	0.9 ~ 1.4	8.8 ~ 13	3.7 6.5 ~ 1	0.1
Fuel pump installation bolts		0.2 ~ 0.3	2.0 ~ 2	2.9 1.4 ~ 2	2.2
Sub fuel sender installation bo	olts	0.2 ~ 0.3	2.0 ~ 2	2.9 1.4 ~ 2	2.2

 $2.5 \simeq 2.7$

 $24.5 \simeq 26.5$

WWW.DIGITALKHODRO.COM

Injector clamp installation bolt

 $18.1 \simeq 19.5$

021-62999292

FL-8

Fuel System

Item	Kgf.m	N.m	lb-ft
High pressure fuel pump installation bolts	2.5 ~ 3.5	24.5 ~ 34.3	18.1 ~ 25.3
Common rail [Bank 1] installation bolts	$2.0 \sim 2.7$	19.6 ~ 26.5	14.5 ~ 19.5
Common rail [Bank 2] installation bolts	2.0 ~ 2.7	19.6 ~ 26.5	14.5 ~ 19.5
High pressure fuel pipe installation nut (High pressure fuel pump ↔ Common Rail)	2.5 ~ 2.9	24.5 ~ 28.4	18.1 ~ 21.0
High pressure fuel pipe installation nut (Common Rail ↔ Injector)	2.5 ~ 2.9	24.5 ~ 28.4	18.1 ~ 21.0
High pressure fuel pipe installation nut (Common Rail [Bank 1] ↔ Common Rail [Bank 2])	2.5 ~ 2.9	24.5 ~ 28.4	18.1 ~ 21.0
High pressure fuel pipe clamp installation bolt	1.0 ~ 1.2	9.8 ~ 11.8	7.2 ~ 8.7

اولین سامانه دیجیتال تعمیرکاران خودرو در ایران

General Information

FL-9

Special Service Tools

Tool (Number and name)	Illustration	Application
09351-4A300 Injector Remover		Removing the injector
09314-3A000 Torque Wrench Socket (17mm)	OT B)	Installing the high pressure fuel pipe
09331-3A000 High Pressure Fuel Pump Remover (مسئوليت محدود)		Removing the high pressure fuel pump
میرکاران خودرو در ایران	اولين سامانه ديجيتال تع	0-6-1-1-

Fuel System

Basic Troubleshooting Basic Troubleshooting Guide

1	Bring Vehicle to Workshop
2	Analyze Customer's Problem
	Ask the customer about the conditions and environment relative to the issue (Use CUSTOMER PROBLEM ANALYSIS SHEET).
3	Verify Symptom, and then Check DTC and Freeze Frame Data
1	Connect Hi-Scan (Pro) to Diagnostic Link Connector (DLC). Record the DTC and freeze frame data.
	ΝΟΤΕ
	To erase DTC and freeze frame data, refer to Step 5.
4	Confirm the Inspection Procedure for the System or Part
	Using the SYMPTOM TROUBLESHOOTING GUIDE CHART, choose the correct inspection procedure for the system or part to be checked.
5	Erase the DTC and Freeze Frame Data
	WARNING
C	NEVER erase DTC and freeze frame data before completing Step 2 MIL/DTC in "CUSTOMER PROBLEM
	ANALYSIS SHEET".
6	Inspect Vehicle Visually
1-2	Go to Step 11, if you recognize the problem.
7	Recreate (Simulate) Symptoms of the DTC
	Try to recreate or simulate the symptoms and conditions of the malfunction as described by customer.
•	If DTC(s) is/are displayed, simulate the condition according to troubleshooting procedure for the DTC.
8	Confirm Symptoms of Problem
	If DTC(s) is/are not displayed, go to Step 9.
•	If DTC(s) is/are displayed, go to Step 11.
9	Recreate (Simulate) Symptom
•	Try to recreate or simulate the condition of the malfunction as described by the customer.
10	Check the DTC
1	If DTC(s) does(do) not occur, refer to INTERMITTENT PROBLEM PROCEDURE in BASIC INSPECTION PROCEDURE. If DTC(s) occur(s), go to Step 11.
11	Perform troubleshooting procedure for DTC
12	Adjust or repair the vehicle
13	Confirmation test
14	END

LW8F1001

General Information

Customer Problem Analysis Sheet

1. VEHICLEINFORMAITON

VIN No.		Transmission	□ M/T □ A/T □ CVT □ etc.
Production date		Driving type	□ 2WD (FF) □ 2WD (FR) □ 4WD
Odometer Reading	km/mile		

2. SYMPTOMS

□ Unable to start	 Engine does not turn over Incomplete combustion Initial combustion does not occur
Difficult to start	Engine turns over slowly Other
Poor idling	 ☐ Rough idling ☐ Incorrect idling ☐ Unstable idling (High: rpm, Low:rpm) ☐ Other
☐ Engine stall	 Soon after starting After accelerator pedal depressed After accelerator pedal released During A/C ON Shifting from N to D-range Other
□ Others	 □ Poor driving (Surge) □ Knocking □ Poor fuel economy □ Back fire □ After fire □ Other

3. ENVIRONMENT

Problem frequency	□ Constant □ Sometimes () □ Once only □ Other	
Weather	□ Fine □ Cloudy □ Rainy □ Snowy □ Other	
Outdoor temperature	Approx °C/°F	
Place	□ Highway □ Suburbs □ Inner City □ Uphill □ Downhill □ Rough road □ Other	
Engine temperature	□ Cold □ Warming up □ After warming up □ Any temperature	
Engine operation	□ Starting □ Just after starting (min) □ Idling □ Racing □ Driving □ Constant speed □ Acceleration □ Deceleration □ A/C switch ON/OFF □ Other	

4. MIL/DTC

MIL (Malfunction Indicator Lamp)		□ Remains ON □ Sometimes lights up □ Does not light
DTC	Normal check (Pre-check)	□ Normal □ DTC () □ Freeze Frame Data
	Check mode	□ Normal □ DTC () □ Freeze Frame Data

5. ECM/PCM INFORMATION

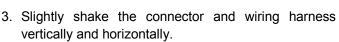
ECM/PCM Part No.	
ROM ID	

SCMFL6150L

Fuel System

FL-12

Basic Inspection Procedure


The measured resistance at high temperature after vehicle running may be high or low. So all resistance must be measured at ambient temperature ($20^{\circ}C$, $68^{\circ}F$), unless stated otherwise.

The measured resistance in except for ambient temperature ($20^{\circ}C$, $68^{\circ}F$) is reference value.

Sometimes the most difficult case in troubleshooting is when a problem symptom occurs but does not occur again during testing. An example would be if a problem appears only when the vehicle is cold but has not appeared when warm. In this case, the technician should thoroughly make out a "CUSTOMER PROBLEM ANALYSIS SHEET" and recreate (simulate) the environment and condition which occurred when the vehicle was having the issue.

- 1. Clear Diagnostic Trouble Code (DTC).
- Inspect connector connection, and check terminal for poor connections, loose wires, bent, broken or corroded pins, and then verify that the connectors are always securely fastened.

- 4. Repair or replace the component that has a problem.
- 5. Verify that the problem has disappeared with the road test.
- Simulating Vibration
- a. Sensors and Actuators

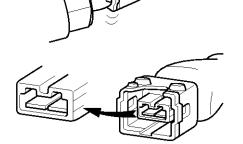
: Slightly vibrate sensors, actuators or relays with finger.

Strong vibration may break sensors, actuators or relays

b. Connectors and Harness

: Lightly shake the connector and wiring harness vertically and then horizontally.

- Simulating Heat
- a. Heat components suspected of causing the malfunction with a hair dryer or other heat source.


WARNING

- DO NOT heat components to the point where they may be damaged.
- DO NOT heat the ECM directly.
- Simulating Water Sprinkling
- a. Sprinkle water onto vehicle to simulate a rainy day or a high humidity condition.

WARNING

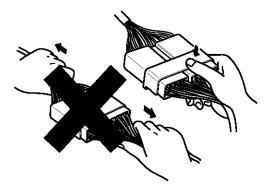
DO NOT sprinkle water directly into the engine compartment or electronic components.

- Simulating Electrical Load
- a. Turn on all electrical systems to simulate excessive electrical loads (Radios, fans, lights, rear window defogger, etc.).

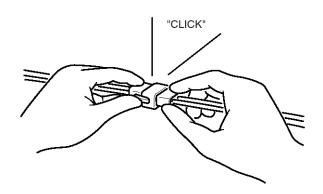
BFGE321A

WWW.DIGITALKHODRO.COM

021-62999292

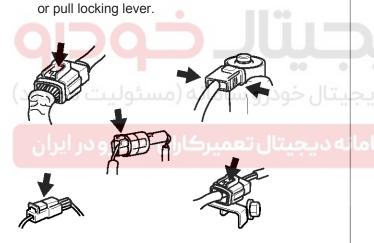

021- 62 99 92 92

FL-13


General Information

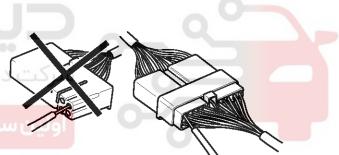
Connector Inspection Procedure

- 1. Handling of Connector
 - a. Never pull on the wiring harness when disconnecting connectors.



c. Listen for a click when locking connectors. This sound indicates that they are securely locked.

BFGE015H

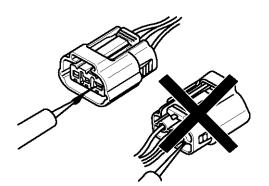

d. When a tester is used to check for continuity, or to measure voltage, always insert tester probe from wire harness side.

b. When removing the connector with a lock, press

BFGE015G

BFGE015F

BFGE015I


WWW.DIGITALKHODRO.COM

021-62999292

Fuel System

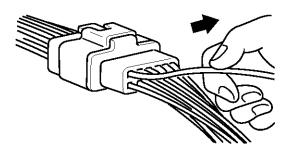
FL-14

e. Check waterproof connector terminals from the connector side. Waterproof connectors cannot be accessed from harness side.

BFGE015J

MOTICE

- Use a fine wire to prevent damage to the terminal.
- Do not damage the terminal when inserting the tester lead.
- 2. Checking Point for Connector
 - a. While the connector is connected: Hold the connector, check connecting condition and locking efficiency.
 - b. When the connector is disconnected:


Check missed terminal, crimped terminal or broken core wire by slightly pulling the wire harness.

Visually check for rust, contamination, deformation and bend.

c. Check terminal tightening condition:

Insert a spare male terminal into a female terminal, and then check terminal tightening conditions.

d. Pull lightly on individual wires to ensure that each wire is secured in the terminal.

BFGE015K

- 3. Repair Method of Connector Terminal
 - a. Clean the contact points using air gun and/or shop rag.

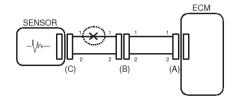
MOTICE

Never use sand paper when polishing the contact points, otherwise the contact point may be damaged.

b. In case of abnormal contact pressure, replace the female terminal.

Wire Harness Inspection Procedure

- 1. Before removing the wire harness, check the wire harness position and crimping in order to restore it correctly.
- Check whether the wire harness is twisted, pulled or loosened.
- 3. Check whether the temperature of the wire harness is abnormally high.
- 4. Check whether the wire harness is rotating, moving or vibrating against the sharp edge of a part.
- 5. Check the connection between the wire harness and any installed part.
- 6. If the covering of wire harness is damaged; secure, repair or replace the harness.


General Information

Electrical Circuit Inspection Procedure

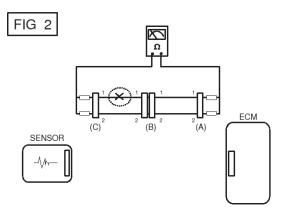
1. Procedures for Open Circuit

- Continuity Check
- Voltage Check

If an open circuit occurs (as seen in [FIG. 1]), it can be found by performing Step 2 (Continuity Check Method) or Step 3 (Voltage Check Method) as shown below.

BFGE501A

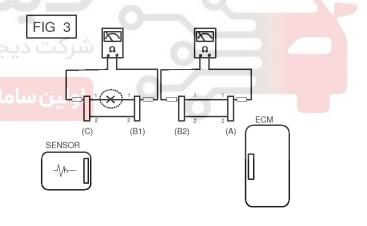
2. Continuity Check Method


WNOTICE

When measuring for resistance, lightly shake the wire harness above and below or from side to side.

Specification (Resistance) 1Ω or less \rightarrow Normal Circuit $1^{M\Omega}$ or Higher \rightarrow Open Circuit

a. Disconnect connectors (A), (C) and measure resistance between connector (A) and (C) as shown in [FIG. 2].

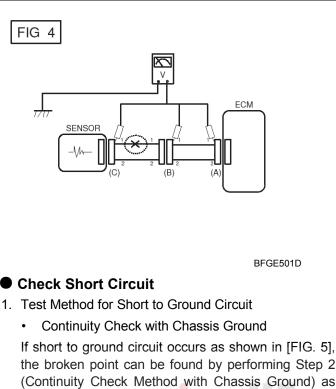

In [FIG.2.] the measured resistance of line 1 and 2 is higher than $1^{M\Omega}$ and below 1 Ω respectively. Specifically the open circuit is line 1 (Line 2 is normal). To find exact break point, check sub line of line 1 as described in next step.

BFGE501B

b. Disconnect connector (B), and measure for resistance between connector (C) and (B1) and between (B2) and (A) as shown in [FIG. 3].

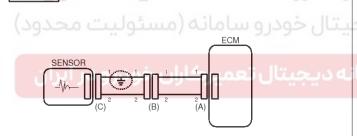
In this case the measured resistance between connector (C) and (B1) is higher than $1^{M\Omega}$ and the open circuit is between terminal 1 of connector (C) and terminal 1 of connector (B1).

BFGE501C


- 3. Voltage Check Method
 - a. With each connector still connected, measure the voltage between the chassis ground and terminal 1 of each connectors (A), (B) and (C) as shown in [FIG. 4].

The measured voltage of each connector is 5V, 5V and 0V respectively. So the open circuit is between connector (C) and (B).

021-62999292


FL-16

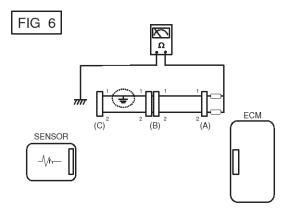
Fuel System

shown below.

FIG 5

BFGE501E

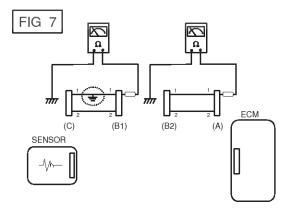
2. Continuity Check Method (with Chassis Ground)


MOTICE

Lightly shake the wire harness above and below, or from side to side when measuring the resistance.

$\begin{array}{l} \text{Specification (Resistance)} \\ 1\Omega \text{ or less} \rightarrow \text{Short to Ground Circuit} \\ 1M\Omega \text{ or Higher} \rightarrow \text{Normal Circuit} \end{array}$

a. Disconnect connectors (A), (C) and measure for resistance between connector (A) and Chassis Ground as shown in [FIG. 6].


The measured resistance of line 1 and 2 in this example is below 1 Ω and higher than 1M Ω respectively. Specifically the short to ground circuit is line 1 (Line 2 is normal). To find exact broken point, check the sub line of line 1 as described in the following step.

BFGE501F

b. Disconnect connector (B), and measure the resistance between connector (A) and chassis ground, and between (B1) and chassis ground as shown in [FIG. 7].

The measured resistance between connector (B1) and chassis ground is 1Ω or less. The short to ground circuit is between terminal 1 of connector (C) and terminal 1 of connector (B1).

BFGE501G

WWW.DIGITALKHODRO.COM

021-62999292

General Information

Symptom Troubleshooting Guide Table

(Symptom 1) Engine Does Not Start

Possible Cause		
 Run out of fuel Faulty starter Not connected fuel feed line Leakage in high pressure fuel circuit Fuse out of order Drift of the rail pressure sensor Cam and crank signals missing simultaneously Low battery voltage Faulty immobilizer Fuel pressure regulator valve contaminated, stuck, jammed Rail pressure regulator valve contaminated, stuck, jammed Bad fuel quality or water ingress in fuel 	 Inversion of fuel connections (feed &amp;amp; return) Faulty fuel filter Clogged low pressure fuel circuit Clogged fuel filter Intermittent faulty fuel line connection Air ingress in the low pressure fuel circuit Clogged return line of high pressure fuel pump Low compression pressure Leakage at the injector Faulty low pressure fuel pump Faulty high pressure fuel pump Injector jammed open ECM program error or hardware fault Faulty glow system 	

(Symptom 2) Engine Starts With Difficulty Or Starts And Stalls

Possible Cause		
 Not connected fuel return line at injector Leakage in high pressure fuel circuit Fuse out of order Clogged air filter Faulty alternator or voltage regulator Compensation of individual injector not adapted No engine coolant temperature sensor signal No rail pressure sensor signal Low battery voltage Electric EGR control valve blocked open Fuel pressure regulator valve contaminated, stuck, jammed Rail pressure regulator valve contaminated, stuck, jammed Bad fuel quality or water ingress in fuel Inversion of fuel connections (feed & amp; amp; return) 	 Carbon deposit on the injector (sealed holes) Injector needle stuck (injection possible over a certain 	

FL-17

Fuel System

021-62999292

(Symptom 3) Poor Starting When Hot

Possible Cause		
 Compensation of individual injector not adapted No rail pressure sensor signal Electric EGR control valve blocked open Fuel pressure regulator valve contaminated, stuck, jammed Rail pressure regulator valve contaminated, stuck, jammed Clogged air filter Air ingress in the low pressure fuel circuit Bad fuel quality or water ingress in fuel 	 Clogged return line of high pressure fuel pump Clogged fuel filter Low compression pressure Intermittent faulty fuel line connection Carbon deposit on the injector (sealed holes) Injector needle stuck (injection possible over a certain pressure) Gasoline in fuel ECM program error or hardware fault 	

(Symptom 4) Unstable Idling

Possible Cause		
 Not connected fuel return line at injector Compensation of individual injector not adapted No rail pressure sensor signal Wiring harness open or poor connection Air ingress in the low pressure fuel circuit Bad fuel quality or water ingress in fuel Clogged fuel filter Clogged air filter Clogged injector return line Leakage in high pressure fuel circuit 	 Faulty glow system Low compression pressure Poor tightening of injector clamp Faulty high pressure fuel pump Injector not adapted Carbon deposit on the injector (sealed holes) Injector needle stuck (injection possible over a certain pressure) Injector jammed open Electric EGR control valve blocked open 	

(Symptom 5) Idle Speed Too High Or Too Low

Possible Cause	
 No engine coolant temperature sensor signal Incorrect state of the electrical pack devices Faulty alternator or voltage regulator ECM program error or hardware fault 	 Electric EGR control valve blocked open Faulty accelerator pedal (At this time, engine speed habeen fixed at 1,250rpm)

General Information

(Symptom 6) Blue, White, Or Black Smokes

Possible Cause		
 Compensation of individual injector not adapted No engine coolant temperature sensor signal No rail pressure sensor signal Electric EGR control valve blocked open Fuel pressure regulator valve contaminated, stuck, jammed Rail pressure regulator valve contaminated, stuck, jammed Oil level too high or too low Bad fuel quality or water ingress in fuel Sealed or damaged catalytic converter 	 Poor tightening of injector clamp Poor injector O-ring, no O-ring or two O-ring installed 	

(Symptom 7) Engine Rattling, Noisy Engine

Possible Cause	
 Compensation of individual injector not adapted Electric EGR control valve blocked open Electric EGR control valve blocked open No engine coolant temperature sensor signal Faulty glow system Low compression pressure Clogged injector return line No rail pressure sensor signal 	 Poor injector O-ring, no O-ring or two O-ring installed Injector not adapted Carbon deposit on the injector (sealed holes) Injector needle stuck (injection possible over a certain pressure) Injector jammed open No engine coolant temperature sensor signal

(Symptom 8) Nurst Noise

Possible Cause	
 Compensation of individual injector not adapted Intermittent faulty fuel line connection Clogged exhaust system No rail pressure sensor signal 	 Fuel pressure regulator valve contaminated, stuck, jammed Rail pressure regulator valve contaminated, stuck, jammed ECM program error or hardware fault

(Symptom 9) Untimely Acceleration/deceleration And Engine Racing

Possible Cause	
 Blocked accelerator pedal position sensor Electric EGR control valve blocked open Intermittent faulty fuel line connection 	 Oil suction (engine racing) No rail pressure sensor signal ECM program error or hardware fault

WWW.DIGITALKHODRO.COM

021-62999292

FL-19

Fuel System

(Symptom 10) Gap When Accelerating And At Re-coupling (Response Time)

Possible Cause	
 Leakage in intake system Incorrect state of the electrical pack devices Blocked accelerator pedal position sensor Electric EGR control valve blocked open Damaged turbocharger or leakage in vacuum line Clogged fuel filter Low compression pressure Leakage in high pressure fuel circuit 	 Fuel pressure regulator valve contaminated, stuck, jammed Rail pressure regulator valve contaminated, stuck, jammed Injector needle stuck (injection possible over a certain pressure) ECM program error or hardware fault

(Symptom 11) Engine Stop

Possible Cause	
 Run out of fuel Not connected fuel feed line Leakage in high pressure fuel circuit Fuse out of order Bad fuel quality or water ingress in fuel Clogged low pressure fuel circuit Clogged fuel filter Crank signals missing Electric EGR control valve blocked open Fuel pressure regulator valve contaminated, stuck, jammed 	 Rail pressure regulator valve contaminated, stuck, jammed Faulty alternator or voltage regulator Intermittent faulty fuel line connection Sealed or damaged catalytic converter Faulty low pressure fuel pump Faulty high pressure fuel pump Gasoline in fuel ECM program error or hardware fault

(Symptom 12) Engine Judder

ران]]	Possible Cause		
 Not co Incorre Compe Electri Faulty Air ing Bad fu Clogge Interm Wiring 	ut of fuel nnected fuel return line at injector ect state of the electrical pack devices ensation of individual injector not adapted c EGR control valve blocked open fuel filter ress in the low pressure fuel circuit el quality or water ingress in fuel ed fuel filter ittent faulty fuel line connection harness open or poor connection glow system	 Low compression pressure Clogged injector return line Poor valve clearance Faulty low pressure fuel pump Poor injector O-ring, no O-ring or two O-ring installed Carbon deposit on the injector (sealed holes) Injector needle stuck (injection possible over a certain pressure) Injector jammed open Gasoline in fuel ECM program error or hardware fault 	

General Information

(Symptom 13) Lack Of Power

Possible Cause	
 Compensation of individual injector not adapted Blocked accelerator pedal position sensor Incorrect state of the electrical pack devices Electric EGR control valve blocked open Leakage in intake system Clogged air filter Oil level too high or too low Sealed or damaged catalytic converter Damaged turbocharger or leakage in vacuum line Damaged turbocharger 	 Clogged fuel filter Leakage at the injector Clogged return line of high pressure fuel pump Clogged injector return line Low compression pressure Injector not adapted Carbon deposit on the injector (sealed holes) Poor valve clearance Engine coolant temperature too high Fuel temperature too high

(Symptom 14) Too Much Power

Possible Cause	
 Compensation of individual injector not adapted Oil suction (engine racing) 	ECM program error or hardware fault

(Symptom 15) Excessive Fuel Consumption

Possible Cause	
 Not connected fuel return line at injector Leakage at the Fuel pressure regulator valve Leakage at fuel temperature sensor Leakage in high pressure fuel circuit Leakage in intake system Clogged air filter Compensation of individual injector not adapted Electric EGR control valve blocked open 	 Incorrect state of the electrical pack devices Oil level too high or too low Bad fuel quality or water ingress in fuel Sealed or damaged catalytic converter Damaged turbocharger Low compression pressure Injector not adapted ECM program error or hardware fault

(Symptom 16) Over Speed Engine When Changing The Gear Box Ratio

Possible Cause	
 Blocked accelerator pedal position sensor Compensation of individual injector not adapted Intermittent faulty fuel line connection Clutch not well set (optional) 	 Oil suction (engine racing) Damaged turbocharger Injector not adapted ECM program error or hardware fault

Fuel System

(Symptom 17) Exhaust Smells

Possible Cause		
 Leakage at electric EGR control valve Oil suction (engine racing) Damaged turbocharger Oil level too high or too low Compensation of individual injector not adapted Sealed or damaged catalytic converter Poor tightening of injector clamp 	 Poor injector O-ring, no O-ring or two O-ring installed Injector not adapted Carbon deposit on the injector (sealed holes) Injector needle stuck (injection possible over a certain pressure) Injector jammed open ECM program error or hardware fault 	

(Symptom 18) Smokes (Black, White, Blue) When Accelerating

Possible Cause		
 Compensation of individual injector not adapted Electric EGR control valve blocked open Clogged air filter Bad fuel quality or water ingress in fuel Oil level too high or too low Damaged turbocharger Sealed or damaged catalytic converter Oil suction (engine racing) Faulty air heater Low compression pressure Leakage in high pressure fuel circuit 	 Intermittent faulty fuel line connection Poor tightening of injector clamp Poor injector O-ring, no O-ring or two O-ring installed Injector not adapted Carbon deposit on the injector (sealed holes) Injector needle stuck (injection possible over a certain pressure) Injector jammed open Gasoline in fuel ECM program error or hardware fault 	

(Symptom 19) Fuel Smells

•	Not connected fuel feed line Not connected fuel return line at injector Leakage at the Fuel pressure regulator valve	 Leakage at fuel temperature sensor Leakage in high pressure fuel circuit 	

(Symptom 20) The Engine Collapses At Take Off

Possible Cause		
 Blocked accelerator pedal position sensor Incorrect state of the electrical pack devices Clogged air filter Inversion of fuel connections (feed &amp; return) Faulty fuel filter Bad fuel quality or water ingress in fuel Air ingress in the low pressure fuel circuit Clogged fuel filter Sealed or damaged catalytic converter 	 Intermittent faulty fuel line connection No rail pressure sensor signal Fuel pressure regulator valve contaminated, stuck, jammed Rail pressure regulator valve contaminated, stuck, jammed Gasoline in fuel ECM program error or hardware fault Faulty accelerator pedal position sensor 	

General Information

(Symptom 21) Engine Does Not Stop

Possible Cause		
Stuck or worn lubrication circuit of turbochargerToo much engine oil	Leakage at vacuum hoseECM program error or hardware fault	
(Symptom 22) Different Mechanical Noises		
Possible Cause		

•	Buzzer noise (discharge by the injectors)	Leakage in intake system
•	Broken clip (vibrations, resonance, noises)	 Poor tightening of injector clamp
•	Incorrect state of the electrical pack devices	Damaged turbocharger
•	Sealed or damaged catalytic converter	Poor valve clearance

اولین سامانه دیجیتال تعمیرکاران خودرو در ایران

021-62999292

FL-24

Actuation Test

Fuel System

Items	Test Condition
A/C COMPRESSOR RELAY	ACTUATION TEST/IG ON/ENGINE RUN
MIL (ENGINE CHECK)	ACTUATION TEST/IG ON/ENGINE RUN
AUXILIARY HEATER RELAY	ACTUATION TEST/IG ON/ENGINE RUN
FUEL PUMP RELAY	ACTUATION TEST/IG ON/ENGINE STOP
FAN-HIGH SPEED	ACTUATION TEST/IG ON/ENGINE STOP
FAN-LOW SPEED	ACTUATION TEST/IG ON/ENGINE STOP
GLOW LAMP	ACTUATION TEST/IG ON/ENGINE RUN
IMMOBILIZER LAMP	ACTUATION TEST/IG ON/ENGINE RUN
ELECTRIC VGT CONTROL ACTUATOR	ACTUATION TEST/IG ON/ENGINE STOP
ELECTRIC EGR CONTROL VALVE	ACTUATION TEST/IG ON/ENGINE STOP
FUEL PRESSURE REGULATOR VALVE(HP PUMP SIDE)	ACTUATION TEST/IG ON/ENGINE STOP
RAIL PRESSURE REGULATOR VALVE(COMMON RAIL SIDE)	ACTUATION TEST/IG ON/ENGINE STOP

اولین سامانه دیجیتال تعمیرکاران خودرو در ایران

Engine Control System

FL-25

Engine Control System

Description

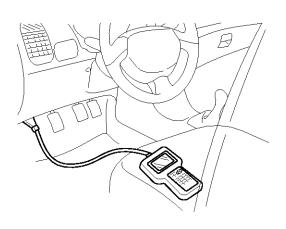
- 1. Engine is hard to start or does not start at all.
- 2. Nstable idle.
- 3. Poor driveability.

- Before removing or installing any part, read the diagnostic trouble codesand then disconnect the battery negative (-) terminal.
- Before disconnecting the cable from battery terminal, turn the ignition switch to OFF. Removal or connection of the battery cable during engine operationor while the ignition switch is ON could cause damage to the ECM.
- Wchecking the generator for the charging state, do not disconnect the battery '+' terminal to prevent the ECM from damage due to the voltage.
- Wcharging the battery with the external charger, disconnect the vehicleside battery terminals to prevent damage to the ECM.

Self-diagnosis

ONOTICE

If a sensor connector is disconnected with the ignition switch turned on, the diagnostic trouble code (DTC) is recorded. In this case, disconnect the battery negative terminal (-) for 15 seconds or more, and the diagnosis memory will be erased.

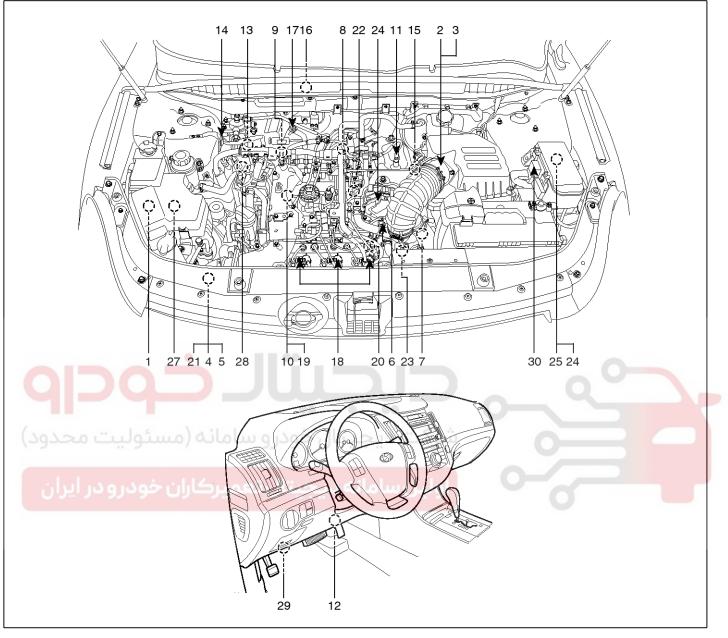

Checking Procedure (Self-diagnosis)

- When attery voltage is excessively low, diagnostic trouble codes can not be read. Be sure to check the battery for voltage and the charging system before starting the test
- Diagnosis memory is erased if the battery or the ECM connector is disconnected. Do not disconnect the battery before the diagnostic trouble codes are completely read and recorded.

Inspection Procedure (Using Generic Scan Tool)

- 1. Turn OFF the ignition switch.
- 2. Connect the scan tool to the data link connector on the lower crash pad.

AWJF300D


- 3. Turn ON the ignition switch.
- 4. Use the scan tool to check the diagnostic trouble code.
- 5. Repair the faulty part from the diagnosis chart.
- 6. Erase the diagnostic trouble code.
- Disconnect the GST.

MOTICE

When deleting diagnostic trouble code, use scan tool as possible.

Fuel System

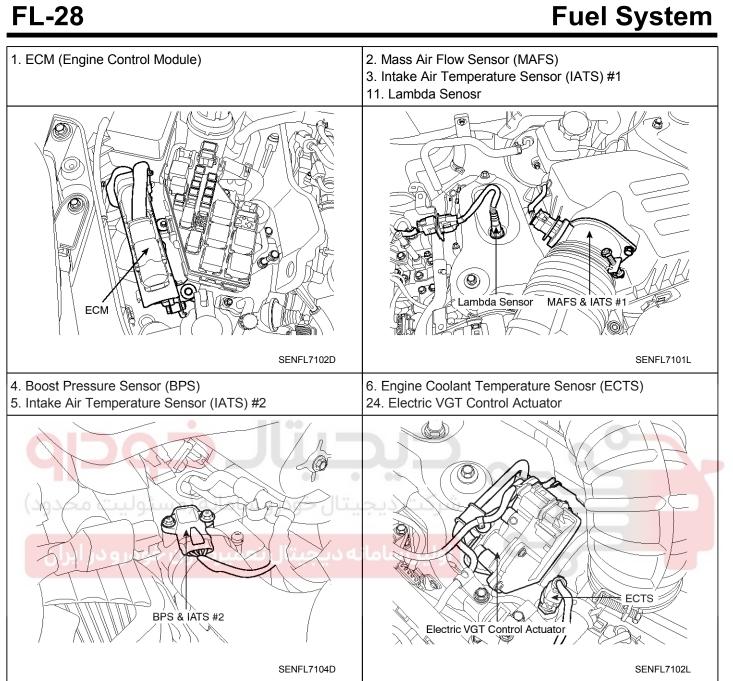
Component Location

SENFL0100L

021- 62 99 92 92

FL-27

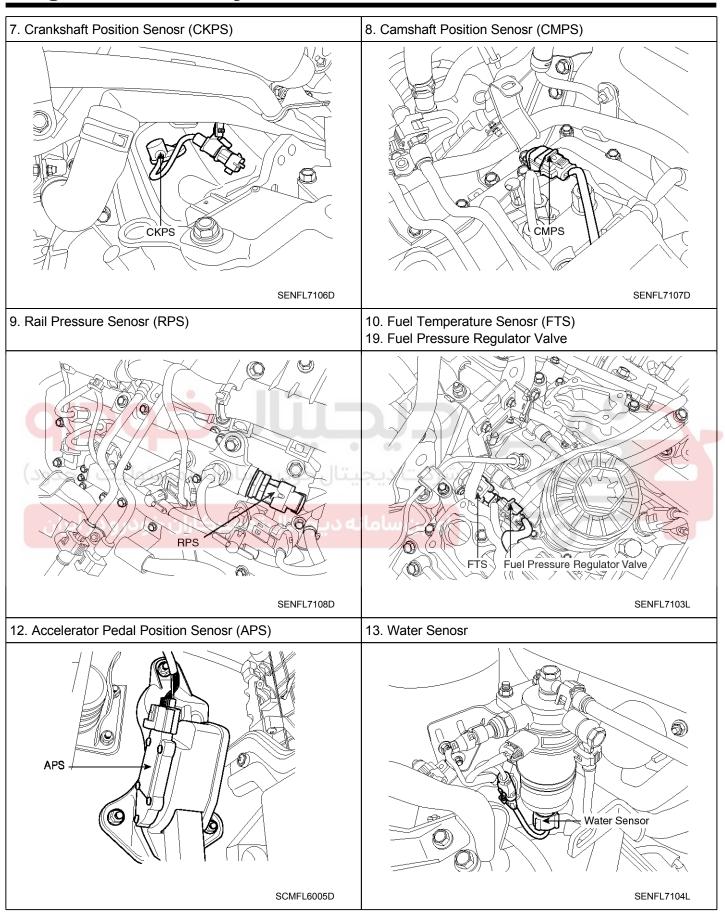
Engine Control System


- 1. ECM (Engine Control Module)
- 2. Mass Air Flow Sensor (MAFS)
- 3. Intake Air Temperature Sensor (IATS) #1
- 4. Boost Pressure Sensor (BPS)
- 5. Intake Air Temperature Sensor (IATS) #2
- 6. Engine Coolant Temperature Sensor (ECTS)
- 7. Crankshaft Position Sensor (CKPS)
- 8. Camshaft Position Sensor (CMPS)
- 9. Rail Pressure Sensor (RPS)
- 10. Fuel Temperature Sensor (FTS)
- 11. Lambda Sensor
- 12. Accelerator Pedal Position Sensor (APS)
- 13. Water Sensor
- 14. CPF Differential Pressure Sensor (DPS)
- 15. Exhaust Gas Temperature Sensor (EGTS) #1 [For VGT]
- 16. Exhaust Gas Temperature Sensor (EGTS) #2 [For CPF]

- 17. A/C Pressure Transducer (APT)
- 18. Injector
- 19. Fuel Pressure Regulator Valve
- 20. Rail Pressure Regulator Valve
- 21. Throttle Control Actuator
- 22. Variable Swirl Control Actuator
- 23. Electric EGR Control Valve 24. Electric VGT Control Actuator
- 25. Main Relay
- 26. Fuel Pump Relay
- 27. PTC Heater Relay
- 28. Glow Control Module
- 29. Data Link Connector (DLC)
- 30. Multi-Purpose Check Connector

دیجیتال خود و سامانه (مسئولیت محدود)

اولین سامانه دیجیتال تعمیرکاران خودرو در ایران

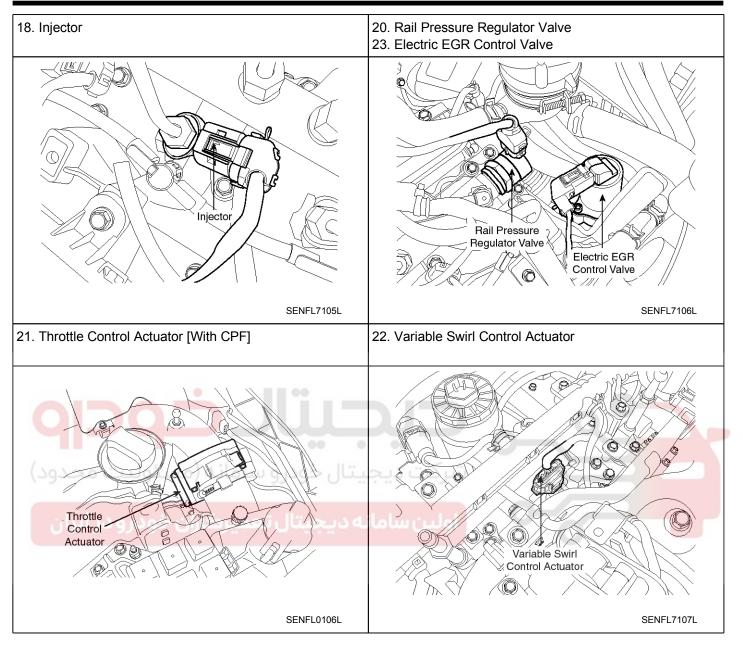

Fuel System

021-62999292

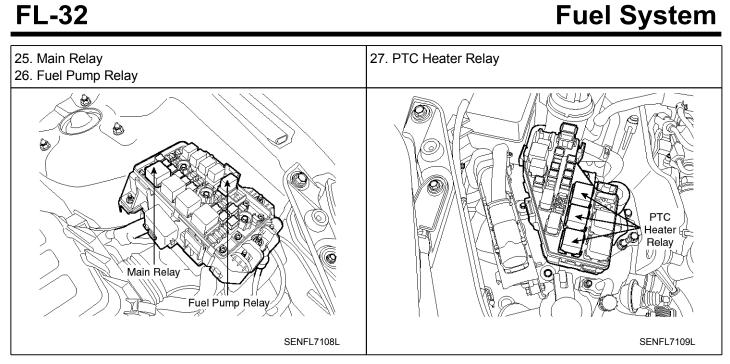
Engine Control System

FL-29

WWW.DIGITALKHODRO.COM


Fuel System

14. Differential Pressure Sensor (DPS) [With CPF]	15. Exhaust Gas Temperature Sensor (EGTS) #1 For VGT [With CPF]
DPS DPS	EGTS #1
SENFL0101L	SENFL0102L
16. Exhaust Gas Temperature Sensor (EGTS) #2 For CPF [With CPF]	17. A/C Pressure Transducer (APT)
С	
SENFL0103L	SENFL7111D


021-62999292

Engine Control System

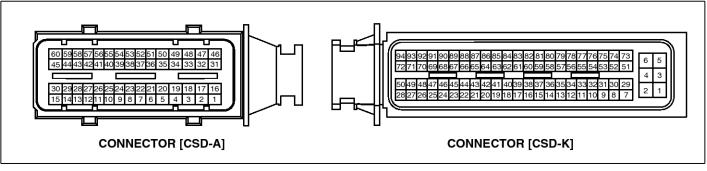
FL-31

Fuel System

WWW.DIGITALKHODRO.COM

021-62999292

Engine Control System


FL-33

SENFL7160L

Engine Control Module (ECM)

Engine Control Module (ECM)

1. ECM Harness Connector

2. ECM Terminal Function

Connector [CSD-A]

Pin	Description	Connected to
1	Injector (Cylinder #2) [Low] control output	Injector (Cylinder #2)
2	Injector (Cylinder #4) [Low] control output	Injector (Cylinder #4)
3	Injector (Cylinder #6) [Low] control output	Injector (Cylinder #6)
4	Fuel Pressure Regulator Valve control output	Fuel Pressure Regulator Valve
5	Rail Pressure Regulator Valve control output	Fuel Pressure Regulator Valve
6	-	
7	Intake Air Temperature Sensor (IATS) #2 signal input	Boost Pressure Sensor (BPS)
8	-	
9	-	
10	Fuel Temperature Sensor (FTS) signal input	Fuel Temperature Sensor(FTS)
11	-	
12	-	
13	-	
14	-	
15	-	
16	Injector (Cylinder #2) [High] control output	Injector (Cylinder #2)
17	Injector (Cylinder #4) [High] control output	Injector (Cylinder #4)
18	Injector (Cylinder #6) [High] control output	Injector (Cylinder #6)
19	-	
20	Electric VGT Control Actuator control output	Electric VGT Control Actuator
21	Sensor ground	Engine Coolant Temperature Sensor (ECTS)
22	Engine Coolant Temperature Sensor(ECTS) signal input	Engine Coolant Temperature Sensor (ECTS)

WWW.DIGITALKHODRO.COM

021-62999292

021-62999292

FL-34

Fuel System

Pin	Description	Connected to
23	Sensor ground	Position Sensor (Variable Swirl Control Actuator)
24	-	
25	-	
26	Sensor power (+5V)	Boost Pressure Sensor (BPS)
27	Sensor power (+5V)	Rail Pressure Sensor (RPS)
28	Camshaft Position Sensor(CMPS) signal input	Camshaft Position Sensor (CMPS)
29	Sensor ground	Camshaft Position Sensor (CMPS)
30	-	
31	Injector (Cylinder #1) [High] control output	Injector (Cylinder #1)
32	Injector (Cylinder #3) [High] control output	Injector (Cylinder #3)
33	Injector (Cylinder #5) [High] control output	Injector (Cylinder #5)
34	-	
35	-	
36	-	
37		
38		
39	Sensor ground	Fuel Temperature Sensor(FTS)
40	Rail Pressure Sensor(RPS) signal input	Rail Pressure Sensor (RPS)
41	Boost Pressure Sensor(BPS) signal input	Boost Pressure Sensor (BPS)
42	مانه دیجیتال تعمیرکاران خودرو در ایران	اولينسا
43	Crankshaft Position Sensor (CKPS) [-] signal input	Crankshaft Position Sensor (CKPS)
44	-	
45	-	
46	Injector (Cylinder #1) [Low] control output	Injector (Cylinder #1)
47	Injector (Cylinder #3) [Low] control output	Injector (Cylinder #3)
48	Injector (Cylinder #5) [Low] control output	Injector (Cylinder #5)
49	Motor [+] control output	Variable Swirl Control Actuator
50	Motor [-] control output	Variable Swirl Control Actuator
51	Sensor power (+5V)	Position Sensor (Variable Swirl Control Actuator)
52	Position Sensor signal input	Position Sensor (Variable Swirl Control Actuator)
53	-	
54	Sensor power (+5V)	Camshaft Position Sensor (CMPS)
55	Sensor ground	Rail Pressure Sensor (RPS)
56	Sensor ground	Boost Pressure Sensor (BPS)
57	Sensor shield	Crankshaft Position Sensor (CKPS)

WWW.DIGITALKHODRO.COM

Engine Control System

FL-35

Pin	Description	Connected to
58	Crankshaft Position Sensor (CKPS) [+] signal input	Crankshaft Position Sensor (CKPS)
59	-	
60	Electric EGR Control Valve control output	Electric EGR Control Valve

Connector [CSD-K]

Pin	Description	Connected to
1	Power ground	Chassis ground
2	Power ground	Chassis ground
3	Battery power	Main Relay
4	Power ground	Chassis ground
5	Battery power	Main Relay
6	Battery power	Main Relay
7	Throttle Control Actuator control output [With CPF]	Throttle Control Actuator
8	ESP/ABS Auto Recognition signal input	ESP: Ground, ABS: Open
9		
10	VS-/IP- (Virtual Ground)	Lambda Sensor
11	VS+ (NERNST Cell Voltage)	Lambda Sensor
12		
13	جيتال خودرو ساماته (مستوليت محدو	سردت دی
14		
15	Sensor power (+5V)	A/C Pressure Transducer (APT)
16	-	
17	-	
18	Battery power	Ignition Switch
19	Sensor power (+5V) [With CPF]	CPF Differential Pressure Sensor (DPS)
20	CPF Differential Pressure Sensor (DPS) signal input [W- ith CPF]	CPF Differential Pressure Sensor (DPS)
21	Sensor ground [With CPF]	CPF Differential Pressure Sensor (DPS)
22	-	
23	-	
24	-	
25	Cooling Fan Relay [High] control output	Cooling Fan Relay [High]
26	-	
27	-	
28	-	
29	PTC Heater Relay control output	PTC Heater Relay

021-62999292

FL-36

Fuel System

Pin	Description	Connected to		
30	-			
31	Feedback signal input [With CPF]	Throttle Control Actuator		
32	Rc/Rp (Pumping Cell Voltage)	Lambda Sensor		
33	Immobilizer Communication Line	Immobilizer Control Module		
34	-			
35	CAN [Low]	Other Control Modules		
36	CAN [High]	Other Control Modules		
37	-			
38	Intake Air Temperature Sensor (IATS) #1 signal input	Mass Air Flow Sensor(MAFS)		
39	-			
40	Sensor Power (+5V)	Cruise Control Switch		
41	-			
42	Water Sensor signal input	Water Sensor (in Fuel Filter)		
43	Brake Switch 2 signal input	Brake Switch		
44	Brake Switch 1 signal input	Brake Switch		
45	Ground	Immobilizer Control Module		
46				
47	Engine speed signal output	Tachometer (Cluster)		
48	A/C Compressor Relay control output	A/C Compressor Relay		
49	Main Relay control output	Main Relay		
50	Cooling Fan Relay [Low] control output	Cooling Fan Relay [Low]		
51	Lambda Sensor Heater control output	Lambda Sensor		
52	-			
53	-			
54	Rc (Compensative Resistance)	Lambda Sensor		
55	Exhaust Gas Temperature Sensor (EGTS) #2 signal in- put [With CPF]	Exhaust Gas Temperature Sensor (EGTS) #2		
56	Exhaust Gas Temperature Sensor (EGTS) #1 signal in- put [With CPF]	Exhaust Gas Temperature Sensor (EGTS) #1		
57	Accelerator Position Sensor (APS) #1 signal input	Accelerator Position Sensor (APS) #1		
58	Accelerator Position Sensor (APS) #2 signal input	Accelerator Position Sensor (APS) #2		
59	A/C Pressure Transducer (APT) signal input	A/C Pressure Transducer (APT)		
60	Sensor power (+5V)	Accelerator Position Sensor (APS) #2		
61	-			
62	-			
63	-			

WWW.DIGITALKHODRO.COM

Engine Control System

FL-37

Pin	Description	Connected to		
64	A/C Switch "ON" signal input	A/C Switch		
65	A/C Pressure Switch signal input	A/C Pressure Switch		
66	-			
67	-			
68	Fuel Pump Relay control output	Fuel Pump Relay		
69	Immobilizer Lamp control output	Immobilizer Lamp (Cluster)		
70	-			
71	Glow Time Lamp control output	Glow Time Lamp (Cluster)		
72	Diagnosis Data Line (K-Line)	Data Link Connector (DLC), Multi-Purpose Connector		
73	Accelerator Position Sensor signal output	EPS Control Module		
74	Mass Air Flow Sensor(MAFS) signal input	Mass Air Flow Sensor(MAFS)		
75	Reference Frequency	Mass Air Flow Sensor(MAFS)		
76	-			
77	-			
78	Sensor ground [With CPF]	Exhaust Gas Temperature Sensor (EGTS) #1,#2		
79	Sensor ground	Accelerator Position Sensor (APS) #1		
80	Sensor ground	Accelerator Position Sensor (APS) #2		
81	Sensor ground	Mass Air Flow Sensor(MAFS)		
82	Sensor power (+5V)	Accelerator Position Sensor (APS) #1		
83	مانه دیجیتال تعمیرکاران خودرو در ایران	اولين سا		
84	Sensor ground	A/C Pressure Transducer (APT)		
85	Thermo Switch signal input	A/C Switch		
86	-			
87	-			
88	-			
89	-			
90	Feedback signal input	Electric VGT Control Actuator		
91	Malfunction Indicator Lamp (MIL) control output	Malfunction Indicator Lamp (MIL)		
92	_			
93	Cruise Control "ACTIVATOR" signal input	Cruise Control Switch		
94	Ground	Cruise Control Switch		

3. ECM Terminal Input/output Signal

Connector [CSD-A]

Pin	Description	Condition	Туре	Level
1	Injector (Cylinder #2) [Low] control output	Engine Run	DC	100 ~ 200V
2	Injector (Cylinder #4) [Low] control output			
3	Injector (Cylinder #6) [Low] control output			
4	Fuel Pressure Regulator Valve control output	Engine Run	PWM (120~200 Hz)	Vbat 0 ~ 0.5V
5	Rail Pressure Regulator Valve control output	Engine Run	PWM (1kHz)	Vbat 0 ~ 0.5V
6	-			
7	Intake Air Temperature Sensor (IATS) #2 signal input	Idle	Analog	$0.5 \sim 4.5 V$
8	-			
9	-			
10	Fuel Temperature Sensor (FTS) signal input	IG ON	Analog	$0.5 \sim 4.5 V$
11				
12		~~~~	0-	
13	م م م بي الم الله (م بينا م الله الله م	~		
14		سرحت د		
15	بهدير جبتال بتعمير كابلان خمديرمدير أبدلن	اولينساوا	0-	
16	Injector (Cylinder #2) [High] control output			0 ~ 200V
17	Injector (Cylinder #4) [High] control output	Engine Run	DC	0 ~ 0.5V
18	Injector (Cylinder #6) [High] control output			— — … 0 ~ 0.3V
19	-			
20	Electric VGT Control Actuator control output	IG ON	PWM (250Hz)	 Vbat 0 ~ 0.5V Engine running duty: 20~8 0% Idle duty: 80% W.O.T duty: 50%
21	Sensor ground	Always	DC	$0 \sim 0.5 V$
22	Engine Coolant Temperature Sensor(ECTS) signal i- nput	ldle	Analog	$0.5 \sim 4.5 V$
23	Sensor ground	Always	DC	$0\sim 0.5 V$
24	-			
25	-			
26	Sensor power (+5V)	IG ON	DC	4.9 ~ 5.1V

Fuel System

WWW.DIGITALKHODRO.COM

Engine Control System

FL-39

Pin	Description	Condition	Туре	Level
27	Sensor power (+5V)	IG ON	DC	4.9 ~ 5.1V
				High: 4.8 ~ 5.2V
28	Camshaft Position Sensor(CMPS) signal input	Engine Run	Pulse	Low: Max. 1.0V
29	Sensor ground	Always	DC	$0 \sim 0.5 V$
30	-			
31	Injector (Cylinder #1) [High] control output			 100 ~ 200V
32	Injector (Cylinder #3) [High] control output	Engine Run	DC	0 ~ 0.5V
33	Injector (Cylinder #5) [High] control output			0~0.3V
34	-			
35	-			
36	-			
37	-			
38	-			
39	Sensor ground	Always	DC	$0 \sim 0.5 V$
40	Rail Pressure Sensor(RPS) signal input	Engine Run	Analog	0.5 ~ 4.5V
41	Boost Pressure Sensor(BPS) signal input	Engine Run	Analog	1.0 ~ 4.4V
42		••	0	
43	Crankshaft Position Sensor (CKPS) [-] signal input	Engine Run	SINE Wave	Vp_p: Min. 1.0V
44	له دیجیتال تعمیرکاران خودرو در ایران	اولىن ساما	0	
45				
46	Injector (Cylinder #1) [Low] control output			 100 ~ 200V
47	Injector (Cylinder #3) [Low] control output	Engine Run	DC	
48	Injector (Cylinder #5) [Low] control output			
49	Motor [+] control output	Engine Run	PWM	reg regVbat
50	Motor [-] control output	Engine Run	PWM	 L L_{0~0.5V} Engine running duty: below 50% Offset learning duty: 0~100 %
51	Sensor power (+5V)	IG ON	DC	4.9 ~ 5.1V
52	Position Sensor signal input	Idle	DC	0.5 ~ 4.5V
53	-			
54	Sensor power (+5V)	IG ON	DC	4.9 ~ 5.1V
55	Sensor ground	Always	DC	$0 \sim 0.5 V$
56	Sensor ground	Always	DC	$0 \sim 0.5 V$

Fuel System

Pin	Description	Condition	Туре	Level
57	Sensor shield			
58	Crankshaft Position Sensor (CKPS) [+] signal input	Engine Run	SINE Wave	Vp_p: Min.1.0V
59	-			
60	Electric EGR Control Valve control output	Engine Run	PWM	 Vbat 0 ~ 0.5V Engine running duty: 5~80 % Valve closing: 5% Valve opening: 80%

Connector [CSD-K]

Pin	Description	Condition	Туре	Level
1	Power ground	Always	DC	$0\sim 0.5 V$
2	Power ground	Always	DC	$0 \sim 0.5 V$
3	Battery power	IG ON	DC	Battery Voltage
4	Power ground	Always	DC	$0 \sim 0.5 V$
5	Battery power	IG ON	DC	Battery Voltage
6	Battery power	IG ON	DC	Battery Voltage
()	يتال خودرو سامانه (مسئوليت محدو	شرکت دید	Dula	Hi: Vbatt
7	Throttle Control Actuator control output	Key On/Key Off	Pulse	Lo: Max. 1V
8	ESP/ABS Auto Recognition signal input	اولين ساما		
9	-			
10	VS-/IP- (Virtual Ground)	Engine Run & Heater ON	DC	~ 3.0V
11	VS+ (NERNST Cell Voltage)	Engine Run & Heater ON	DC	~ 3.0V
12	-			
13	-			
14	-			
15	Sensor power (+5V)	IG ON	DC	4.9 ~ 5.1V
16	-			
17	-			
18	Battery power	IG ON	DC	Battery Voltage
10		IG OFF	DC	Max. 0.5V
19	Sensor power (+5V)	IG ON	DC	4.9 ~ 5.1V
20	CPF Differential Pressure Sensor (DPS) signal input	Idle	Analog	$0.5 \sim 4.5 V$
21	Sensor ground	ldle	DC	Max. 50mV

WWW.DIGITALKHODRO.COM

Engine Control System

FL-41

Pin	Description	Condition	Туре	Level
22	-	Condition	турс	
23				
23				
24	-	Relay OFF		Battery Voltage
25	Cooling Fan Relay [High] control output	-	DC	Max. 1.0V
26	_	Relay ON		
20	-			
	-			
28	-			Detterril/elterre
29	PTC Heater Relay control output	Relay OFF	DC	Battery Voltage
		Relay ON		Max. 1.0V
30	-			
31	Feedback signal input	Normal	DC	Vbatt
	· · ·	Abnormal		Max. 0.5V
32	Rc/Rp (Pumping Cell Voltage)	Engine Run & Heater ON	DC	~ 3.5V ~ 3.2V ~ 2.8V
				0
33	Immobilizer Communication Line	00	0-	
34	ستال خودر و سامانه (مسئوليت محدو	شرکت دیح		
35	CAN [Low]	RECESSIVE	DC	2.0 ~ 3.0V
	نه در جریال تعمیر کاران خمد، مدر ایران	DOMINANT	0-	0.5 ~ 2.25V
36	CAN [High]	RECESSIVE	DC	2.0 ~ 3.0V
		DOMINANT		2.75 ~ 4.5V
37	-			
38	Intake Air Temperature Sensor (IATS) #1 signal input	ldle	Analog	$0.5 \simeq 4.5 { m V}$
39	-			
40	Sensor Power (+5V)	IG ON	DC	$4.9 \sim 5.1 V$
41	-			
42	Water Sensor signal input	IG ON	DC	
40	Deales Orable Orabin al innert	Release	50	Battery Voltage
43	Brake Switch 2 signal input	Push	DC	Max. 0.5V
		Release		Max. 0.5V
44	Brake Switch 1 signal input	Push	DC	Battery Voltage
45	Ground	Always	DC	0 ~ 0.5V
46	_			
L			1	

021-62999292

FL-42

Fuel System

Pin	Description	Condition	Туре	Level
47	Engine speed signal output	Engine Run	Pulse (4P- ulse/rev)	Vbat 0 ~ 0.5V
48	A/C Compressor Relay control output	A/C OFF	DC	Battery Voltage
		A/C ON		Max. 1.0V
49	Main Relay control output	Relay OFF	DC	Battery Voltage
		Relay ON		Max. 1.0V
50	0 Cooling Fan Relay [Low] control output	Relay OFF	DC	Battery Voltage
		Relay ON		Max. 1.0V
51	Lambda Sensor Heater control output	Engine Run & Heater ON	PWM (100 Hz)	Vbat 0 ~ 0.5V
52	-			
53	-			
54	Rc (Compensative Resistance)	Engine Run & Heater ON	DC	~ 3.6V ~ 3.3V ~ 2.8V
55	Exhaust Gas Temperature Sensor (EGTS) #2 signal input	Idle	Analog	0.5 ~ 4.5V
56	Exhaust Gas Temperature Sensor (EGTS) #1 signal input	شرک _{انا} دیج	Analog	0.5 ~ 4.5V
57	Accelerator Position Sensor (APS) #1 signal input	Released	DC	$0.7 \sim 0.8 V$
57	Accelerator Position Sensor (APS) #1 signal input	Fully depressed	DC	3.8 ~ 4.4V
58	Accelerator Position Sensor (APS) #2 signal input	Released	DC	$0.275 \simeq 0.475 \mathrm{V}$
50		Fully depressed	DC	$1.75 \simeq 2.35 V$
59	A/C Pressure Transducer (APT) signal input	A/C ON	DC	Max. 4.8V
60	Sensor power (+5V)	IG ON	DC	4.9 ~ 5.1V
61				
62				
63	_			
64	A/C Switch "ON" signal input	A/C S/W OFF	DC	Max. 1.0V
04		A/C S/W ON		Battery Voltage
65	A/C Pressure Switch signal input	S/W OFF	DC	Max. 1.0V
		S/W ON		Battery Voltage
66	-			
67	-			

WWW.DIGITALKHODRO.COM

Engine Control System

FL-43

Pin	Description	Condition	Туре	Level
		Relay OFF	DO	Battery Voltage
68	Fuel Pump Relay control output	Relay ON	DC	Max. 1.0V
		Lamp OFF	50	Battery Voltage
69	Immobilizer Lamp control output	Lamp ON	DC	Max. 1.0V
70	-			
71		Lamp OFF	DC	Battery Voltage
	Glow Time Lamp control output	Lamp ON	DC	Max. 1.0V
		When transmitti-		High: Min. Vbatt×80%
72	Diagnosia Data Lina (K Lina)	ng	Pulse	Low: Max. Vbatt×20%
	Diagnosis Data Line (K-Line)		Puise	High: Min. Vbatt×70%
		When receiving		Low: Max. Vbatt×30%
73	Accelerator Position Sensor signal output			
74	Mass Air Flow Sensor(MAFS) signal input	Engine Run & Warmed-up	Pulse	5V 0 ~ 0.5V
75	Reference Frequency	Idle	Pulse	High: Vcc or Vbat Low: Max. 1.0V
76			5	
77	يتال خودرو سامانه (مسئوليت محدو	شرکت دیج	(
78	Sensor ground	Idle	DC	Max. 50mV
79	Sensor ground	Always	DC	0~0.5V
80	Sensor ground	Always	DC	0~0.5V
81	Sensor ground	Always	DC	$0 \sim 0.5 V$
82	Sensor power (+5V)	IG ON	DC	4.9 ~ 5.1V
83	-			
84	Sensor ground	Always	DC	$0 \sim 0.5 V$
0.5	Thormo Switch pignol instit	A/C OFF	50	Max. 0.5V
85	Thermo Switch signal input	A/C ON	DC	Battery Voltage
86	-			
87	-			
88	-			
89	-			

021-62999292

FL-44

Fuel System

Pin	Description	Condition	Туре	Level
90	Feedback signal input	IG ON	PWM	• Idle duty: 80% • W.O.T duty: 50
91	Malfunction Indicator Lamp (MIL) Control output	Lamp OFF	DC	Battery Voltage
91		Lamp ON	DC	Max. 1.0V
92	-			
93	Cruise Control "ACTIVATOR" signal input	IG ON	DC	4.9 ~ 5.1V
94	Ground	Always	DC	$0 \sim 0.5 V$

ویچیپار حمور م شرکت دیجیتال خودرو سامانه (مسئولیت محدود)

اولین سامانه دیجیتال تعمیرکاران خودرو در ایران

WWW.DIGITALKHODRO.COM

021-62999292

FL-45

Engine Control System

Circuit Diagram

SENFL7110L

WWW.DIGITALKHODRO.COM

021-62999292

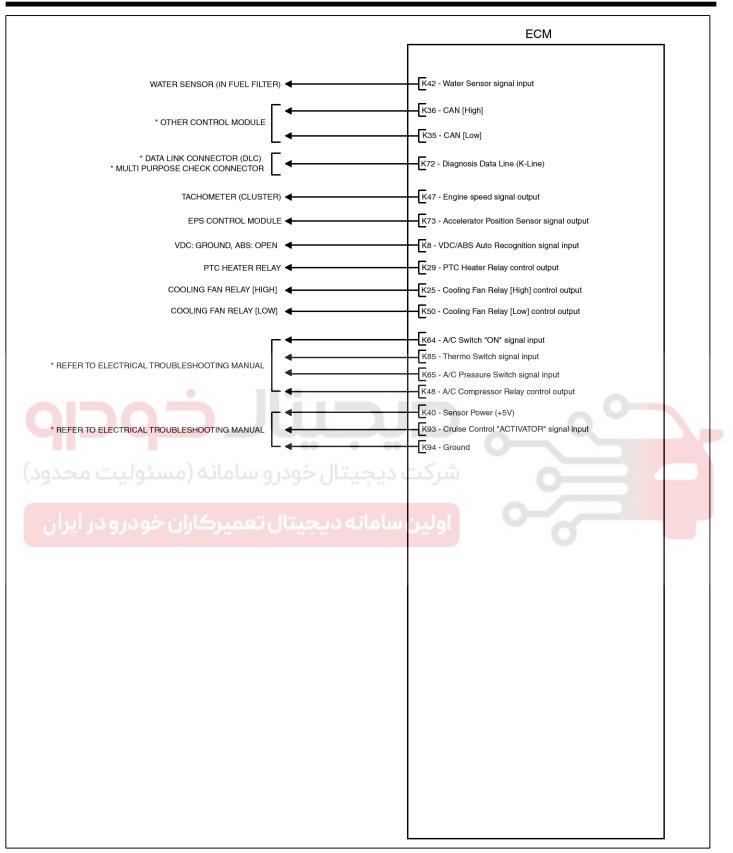
FL-46

Fuel System

MAFS & IATS #1	ECM
	K38 - Intake Air Temperature Sensor (IATS) #1 signal input
	K81 - Sensor ground
	K74 - Mass Air Flow Sensor(MAFS) signal input
	K75 - Reference Frequency
BPS & IATS #2	
	A56 - Sensor ground A7 - Intake Air Temperature Sensor (IATS) #2 signal input
	A26 - Sensor power (+5V)
	A41 - Boost Pressure Sensor(BPS) signal input
	A21 - Sensor ground
	A22 - Engine Coolant Temperature Sensor(ECTS) signal input
CMPS 1	A54 - Sensor power (+5V)
	A28 - Camshaft Position Sensor(CMPS) signal input
	A29 - Sensor ground
	A43 - Crankshaft Position Sensor (CKPS) [-] signal input
	A58 - Crankshaft Position Sensor (CKPS) [+] signal input
RPS 00 0	A57 - Sensor shield
جیتال خودر و سامانه <mark>، اسما</mark> وایت محدود)	A27 - Sensor power (+5V)
	A40 - Rail Pressure Sensor(RPS) signal input
<u>انه در چرتال تعمیرک <mark>اخت</mark>وم</u> ر و در ایران	A10 - Fuel Temperature Sensor (FTS) signal input
	A39 - Sensor ground
LAMBDA SENSOR 2 MAIN RELAY	
	K51 - Lambda Sensor Heater control output
	K11 - VS+ (NERNST Cell Voltage)
	K10 - VS-/IP- (Virtual Ground)
4	K32 - Rc/Rp (Pumping Cell Voltage)
APS 4	
2 5	K82 - Sensor power (+5V)
1	K79 - Sensor ground K60 - Sensor power (+5V)
	K58 - Accelerator Position Sensor (APS) #2 signal input
APT	K80 - Sensor ground
	K84 - Sensor ground
	K15 - Sensor power (+5V) K59 - A/C Pressure Transducer (APT) signal input

SENFL7111L

021-62999292


Engine Control System

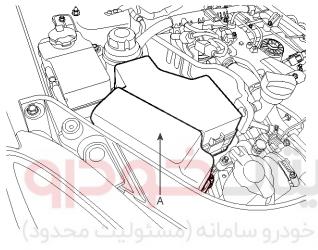
FL-47

	ECM
DPS 1 3 2 EGTS #1 (VGT) 1 	K22 - Sensor ground K19 - Sensor power (+5V) K20 - CPF Differential Pressure Sensor (DPS) signal input K56 - Exhaust Gas Temperature Sensor (EGTS) #1 signal input
	K78 - Sensor ground K55 - Exhaust Gas Temperature Sensor (EGTS) #2 signal input K7 - Throttle Control Actuator control output K31 - Feedback signal input
	A31 - Injector (Cylinder #1) [High] control output A46 - Injector (Cylinder #1) [Low] control output A16 - Injector (Cylinder #2) [High] control output
	A1 - Injector (Cylinder #2) [Low] control output [A32 - Injector (Cylinder #3) [High] control output [A47 - Injector (Cylinder #3) [Low] control output [A17 - Injector (Cylinder #4) [High] control output [A2 - Injector (Cylinder #4) [Low] control output
	A33 - Injector (Cylinder #5) [Ligh] control output A48 - Injector (Cylinder #5) [Low] control output A18 - Injector (Cylinder #6) [High] control output A3 - Injector (Cylinder #6) [Low] control output
FUEL PRESSURE REGULATOR VALVE ALL PRESSURE REGULATOR VALVE T I TTT	A - Fuel Pressure Regulator Valve control output
ARIABLE SWIRL CONTROL VALVE VARIABLE SWIRL CONTROL ACTUATOR	A60 - Electric EGR Control Valve control output
	A51 - Sensor power (+5V) A52 - Position Sensor signal input A23 - Sensor ground A49 - Motor [+] control output
ELECTRIC VGT CONTROL ACTUATOR 2 1 4 4	A50 - Motor [-] control output

SENFL0120L

Fuel System

SENFL7113L


021-62999292

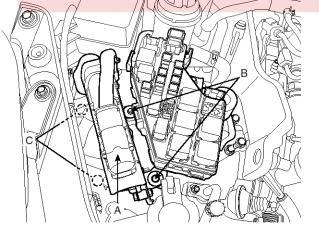
FL-49

Engine Control System

Replacement

- After replacing ECM, MUST input the injector specific data (7 digits) of each cylinder into a new ECM with scan tool.
- In the case of the vehicle equipped with immobilizer, perform "KEY TEACHING" procedure together (Refer to "IMMOBILIZER" in BE group).
- 1. Turn ignition switch OFF and disconnect the negative (-) battery cable.
- 2. Remove the cover of the ECM & relay box (A).

5. Install a new ECM.


ECM installation bolts (on bracket):

 $7.8 \simeq 11.8$ N.m (0.8 ~ 1.2 kgf.m, 5.8 ~ 8.7 lb-ft)

ECM bracket installation bolts/nuts:

- $3.9 \sim 5.9$ N.m (0.4 \sim 0.6 kgf.m, 2.9 \sim 4.3 lb-ft)
- 6. Connect the negative(-) battery cable.
- 7. Perform "ECM Change" procedure [With CPF].
 - 1) Turn ignition switch OFF.
 - 2) Connect a GDS Data Link Connector (DLC).
 - 3) Turn ignition switch ON.
 - 4) Select "Vehicle, Model year, Engine, System".
 - 5) Select "Vehicle S/W Management".
 - 6) Select "Component Change Routine".
 - 7) Select "ECU Change".

SENFL7122D

SENFL7123D

4. Unscrew the ECM bracket mounting bolts (B) and the nuts (C), and then remove the ECM.

8) Input the mileage in odometer.

021-62999292

Fuel System

Engine Control System

9) Confirm the "Complete" message and then turn ignition switch OFF.

- (Refer to "INJECTOR" in this group).
- 9. Perform "Key Teaching" procedure (Refer to "IMMOBILIZER" in BE group).

FL-51

021-62999292

Fuel System

FL-52

ECM Problem Inspection Procedure

- TEST ECM GROUND CIRCUIT: Measure resistance between ECM and chassis ground using the backside of ECM harness connector as ECM side check point. If the problem is found, repair it.
- TEST ECM CONNECTOR: Disconnect the ECM connector and visually check the ground terminals on ECM side and harness side for bent pins or poor contact contact pressure. If the problem is found, repair it.
- 3. If problem is not found in Step 1 and 2, the ECM could be faulty. If so, replace the ECM with a new one, and then check the vehicle again. If the vehicle operates normally then the problem was likely with the ECM.
- 4. RE-TEST THE ORIGINAL ECM : Install the original ECM (may be broken) into a known-good vehicle and check the vehicle. If the problem occurs again, replace the original ECM with a new one. If problem does not occur, this is intermittent problem (Refer to INTERMITTENT PROBLEM PROCEDURE in BASIC INSPECTION PROCEDURE)

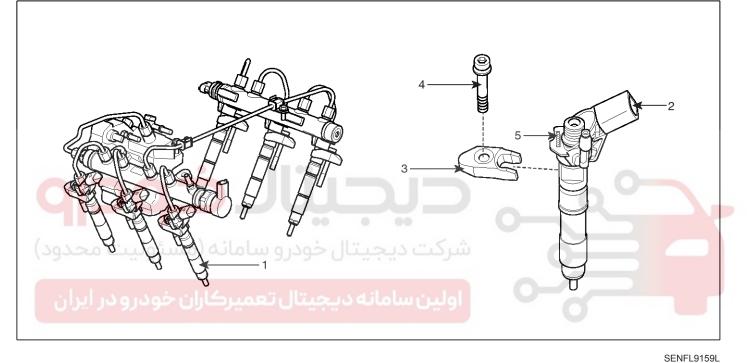
اولین سامانه دیجیتال تعمیرکاران خودرو در ایران

021-62999292

FL-53

Engine Control System

Injector

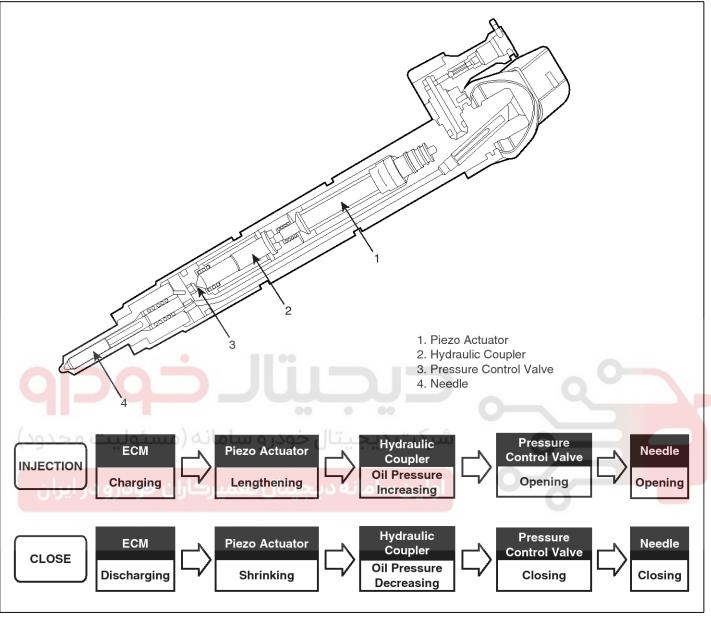

Description

WARNING

As the Piezo-Injector operates under maximum DC 200V, there may be a risk of an electric shock caused by shorted control line etc. So when repairing the injector or its wiring, disconnect the battery negative (-) terminal from the battery and wait for about 30 seconds.

Components

The injectors are installed on the cylinder head and inject the compressed fuel stored in common rail into each cylinder by ECM control signal. This consists of the piezo actuator, the hydraulic coupler which amplifies output of the piezo actuator, the pressure control valve which moves the needle, the needle which opens or closes the injection hole of the injector, the fuel inlet nipple, and the fuel return nipple.


- 1. Injector
- 2. Connector
- 3. Clamp

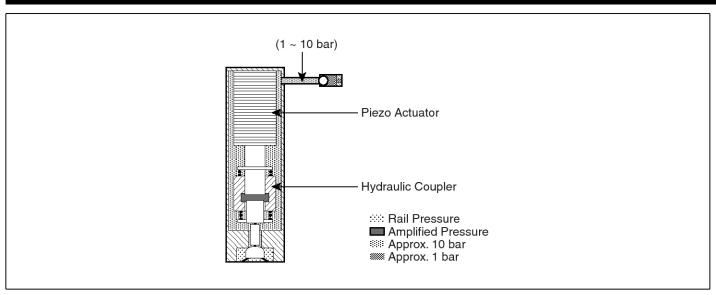
- 4. Clamp Mounting Bolt
- 5. Injector Specific Data (7 digits)

021-62999292

Fuel System

Operation Principle

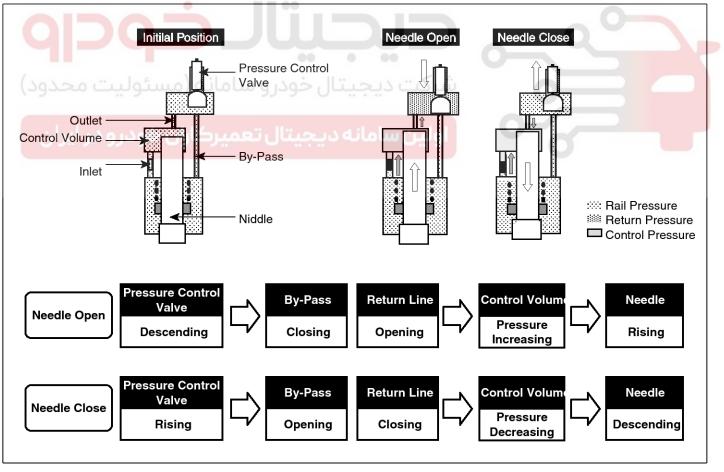
SENFL7114L


Piezo Actuator

The Piezo Actuator is made up of several floors of cylindrical piezo-ceramic (height: approximately 90μ). This lengthens by from 1.5% through 2.0% of its length if voltage is applied (Piezoelectric Converse Effect) and this length is "Stroke". The number and the cross section of the ceramic are proportional to the actuator's stroke and output respectively.

Hydraulic Coupler

The hydraulic coupler is located under the piezo actuator and amplifies the actuator's output by the cross section ratio of the upper and the lower pistons. At this time, the actuator's stroke is lengthened. The hydraulic oil is the fuel and the oil pressure to operate the hydraulic coupler normally is from 1 through 10 bar.


Engine Control System

SENFL7115L

• Pressure Control Valve

The Pressure Control Valve is located under the hydraulic coupler and controls the needle by amplified actuator's output.

Needle

The needle is located under the pressure control valve

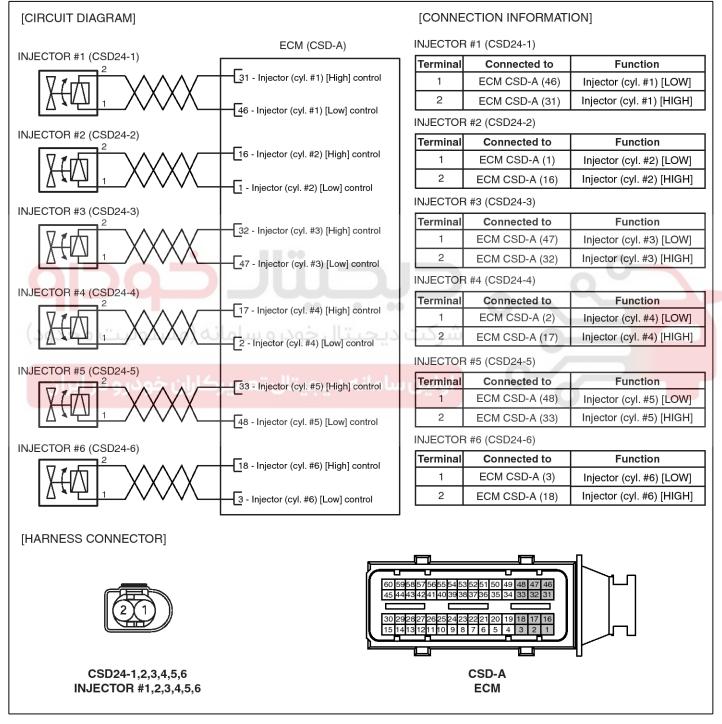
and finally opens or closes the injection hole.

021-62999292

FL-55

WWW.DIGITALKHODRO.COM

SENFL7116L


FL-56

Fuel System

021-62999292

Specification	
Items	Specification
Component Resistance ($^{k\Omega}$)	150 ~ 250 [20 ℃(68°F)]
Operation Voltage (V)	100 ~ 200

Circuit Diagram

SENFL7117L

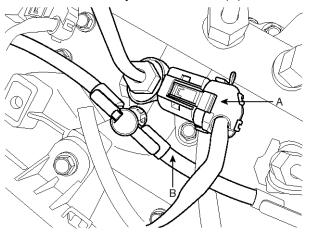
Engine Control System

Removal

As the Piezo-Injector operates under maximum DC 200V, there may be a risk of an electric shock caused by shorted control line etc. So when repairing the injector or its wiring, disconnect the battery negative (-) terminal from the battery and wait for about 30 seconds.

- Common Rail Fuel Injection System operates with extremely high pressure (approximately 1,600bar), so never perform any work on injection system with engine running or within 30 seconds after the engine stops.
- Keep cleanly the parts and the working area.
- Pay attention to a foreign substance.
- Just before installing injector, tube or hose, remove the protect-cap attached on them.
- Do not remove injector except for special case.
- When installing Injector

- Wash the contact area of the injector and replace the O-ring with a new one.

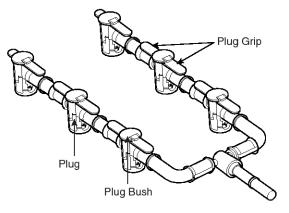

- Spread oil on the injector O-ring.

- To protect damage caused by shock, vertically insert the injector into the cylinder head.

When installing High Pressure Fuel Pipe
 Do not use again the used high pressure fuel pipe.

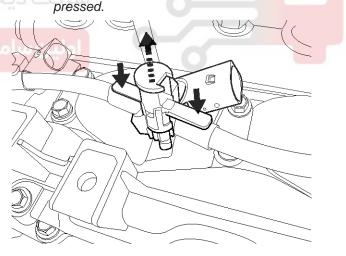
- Install the flange nut correctly.

- 1. Turn ignition switch OFF and disconnect the negative (-) battery cable.
- 2. Disconnect the injector connector (A).



SENFL7129D

3. Disconnect the injector return line (B).


Before connecting the injector return line or after disconnecting the injector return line, check that the plug bush was completely raised from the plug. Otherwise fuel will leak around the injector's nipple because of broken plug.

SENFL7118L

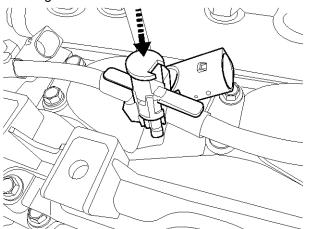
UNOTICE IDISCONNECTION-INJECTOR RETURN LINE1

1. Pull the plug bush upward with the plug grip

SENFL7131D

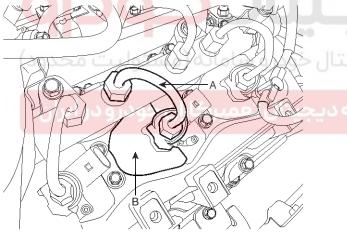
2. Seize the return line on both sides of the plug, and then disconnect the plug upward from the injector nipple.

021-62999292


Fuel System

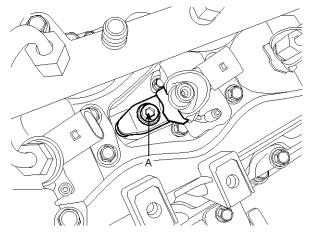
021-62999292

FL-58


[CONNECTION-INJECTOR RETURN LINE]

1. With the plug bush fully raised, vertically install the plug to the injector nipple until "Click" sound generates.

SENFL7132D


- 2. Press the plug bush downward until "Click" sound generates.
- 4. Disconnect the high pressure fuel pipe (A).

SENFL7133D

5. Remove the injector pad (B).

6. Unscrew the injector clamp bolt (A), and then remove the injector.

SENFL7134D

WNOTICE

If the injector adheres to the cylinder head, use the Special Service Tool (SST No.: 09351-4A300).

Installation

1. Installation is reverse of removal.

WNOTICE

1. When installing the high pressure fuel pipe, apply the specified tightening torques with the special service tool [SST No.: 09314-3A000].

2. When installing the high pressure fuel pipe connecting the common rail and injector, follow the below procedure.

- 1. Temporarily install the nuts on common rail and injector
- 2. Install the injector side and common rail side sequentially

Injector clamp installation bolt: $24.5 \sim 26.5 \text{ N} \cdot \text{m}$ ($2.5 \sim 2.7 \text{ kgf} \cdot \text{m}$, $18.1 \sim 19.5 \text{ lbf} \cdot \text{ft}$) High pressure fuel pipe installation nut: $24.5 \sim 28.4 \text{ N} \cdot \text{m}$ ($2.5 \sim 2.9 \text{ kgf} \cdot \text{m}$, $18.1 \sim 21.0 \text{ lbf} \cdot \text{ft}$)

Engine Control System

Replacement

WARNING

As the Piezo-Injector operates under maximum DC 200V, there may be a risk of an electric shock caused by shorted control line etc. So when repairing the injector or its wiring, disconnect the battery negative (-) terminal from the battery and wait for about 30 seconds.

- Common Rail Fuel Injection System operates with extremely high pressure (approximately 1,600bar), so never perform any work on injection system with engine running or within 30 seconds after the engine stops.
- Keep cleanly the parts and the working area.
- Pay attention to a foreign substance.
- Just before installing injector, tube or hose, remove the protect-cap attached on them.
- Do not remove injector except for special case.
- When installing Injector

- Wash the contact area of the injector and replace the O-ring with a new one.

- Spread oil on the injector O-ring.

- To protect damage caused by shock, vertically insert the injector into the cylinder head.

When installing High Pressure Fuel Pipe

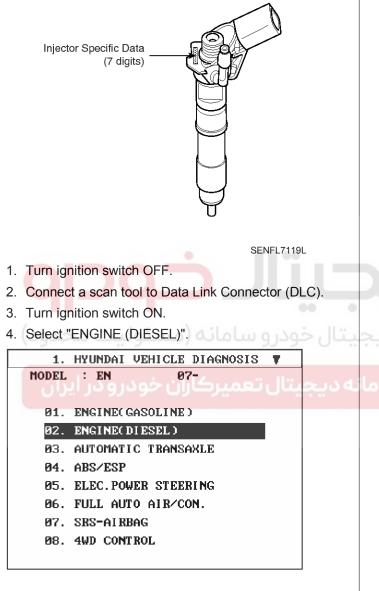
- Do not use again the used high pressure fuel pipe.

- Install the flange nut correctly.

After replacing injector, MUST input the injector specific data (7 digits) of each cylinder into ECM with scan tool.

- 1. Remove the injector (Refer to "REMOVAL" procedure).
- 2. Install the injector (Refer to "INSTALLATION" procedure).
- Perform "Injector Specific Data Input" procedure (Refer to "INJECTOR SPECIFIC DATA INPUT" procedure).

021-62999292


FL-60

Injector Specific Data Input

After replacing injector, MUST input the injector specific data (7 digits) of each cylinder into ECM with scan tool.

WNOTICE

SENFL7162L

Fuel System

5. Select "INJECTOR SPECIFIC DATA".

1. HYUNDAI VEHICLE DIAGNOSIS 🔺
MODEL : EN 07-
SYSTEM : ENGINE(DIESEL)
EURO-4 VGT(CAN)
03. FLIGHT RECORD
04. ACTUATION TEST
05. SIMU-SCAN
06. IDENTIFICATION CHECK
07. ENGINE TEST FUNCTION
08. COMPONENT CHANGE ROUTINE
09. INJECTOR SPECIFIC DATA
10. DATA SETUP(UNIT CONV.)

SENFL7163L

6. Confirm the message, and then press "ENTER" key.

1. HYUNDAI VEHICLE DIAGNOSIS 🔺
CONDITION: IG. KEY ON (ENGINE STOP)
IF THE INJ IS CHANGED, THE INJ
CORRECTION FUNC. SHOULD BE PERFORM
TO CONTROL THE NORMAL FUEL INJ.
TO INPUT THE INJECTOR NUMBER, PRESS
SHIFT KEY AND SELECT THE CYL. BY
ARROW KEY AT THE SAME TIME. AND
INPUT THE INJ DATA BY [F1]~[F6],
DIGIT KEY. AND THEN PRESS LENTER].
AFTER COMPLETE, TURN THE IG. KEY OFF
AND RECHECK THE SYSTEM AFTER 10 SEC

SENFL7164L

7. Input the injector data (7 digit), and then press "ENTER" key.

1.9. INJECTOR SPECIFIC DATA				
INJ. # 1	C6FPR4E			
INJ. # 2	MEI GY25	OF ALL CYL.		
INJ. # 3	3EI RWFP	AT ONE TIME		
INJ. #4	KQOM83V			
INJ. # 5	WQMOQVD			
INJ. # 6	A3EJKO₩			
SELECT THE CYLINDER BY F1~F6 KEY				
AND INPUT THE DATA BY ARROW KEY				
AND PRESS LENTERIKEY.				
ABCD EFGH IJKL MNOP QR-U VW-Z				

SENFL7165L

021-62999292

Engine Control System

8. After comfirming the "Complete" message, turn ignition switch OFF.

1.9. INJECTOR SPECIFIC DATA			
INJ. # 1	C6FPR4E		
INJ. # 2	MEI GY25	INPUT THE NUM OF ALL CYL.	
INJ. # 3	3EI RWFP	AT ONE TIME	
INJ. # 4	KQOM83V		
INJ. # 5	MANOAAD		
INJ. # 6	AJEJKOW		
WRITING COMPLETE			
ABCD EFGH IJKL MNOP QR-U VW-Z			

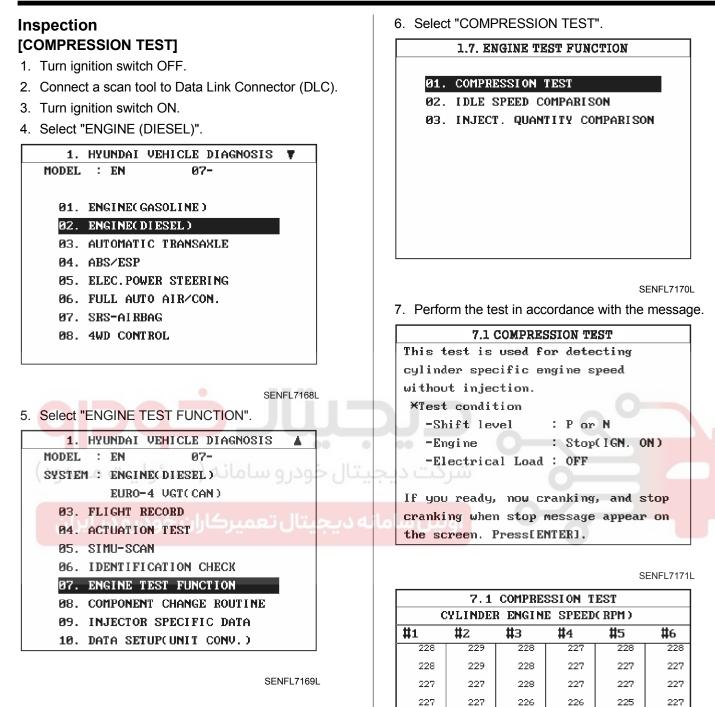
SENFL7166L

9. In about 10 seconds, turn ignition switch ON and check the injector specific data memorized in the ECM.

MOTICE

In case of failure, input the injector specific data (7 digits) into the ECM again.

1.9. IN	JECTOR SPEC	CIFIC DATA	00 0 00
INJ. # 1	C6FPR4E	وديو سامانه (کت دیجیتال خ
INJ. # 2	MEI GY25	INPUT THE NUM OF ALL CYL.	0
INJ. # 3	3EI RWFP	AT ONE TIME	لين سامانه ديجا
INJ. # 4	KOUN83A	٥٥ صدير صر	
INJ. # 5	WQMOQVD		
INJ. # 6	A3EJKOW		
	WRITING F	AIL	
ABCD EFG	I IJKL MNC	OP QR−U VW−Z	


SENFL7167L

FL-61

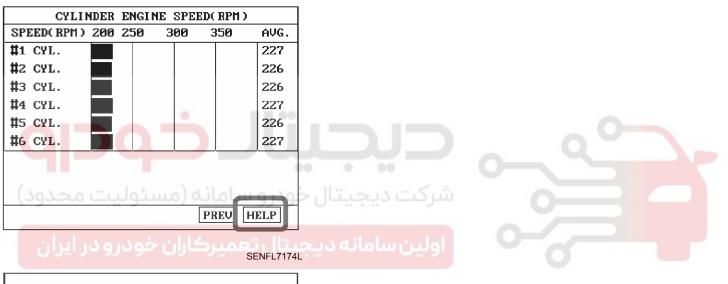
021- 62 99 92 92

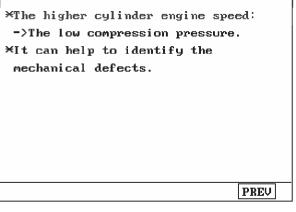
FL-62

Fuel System

ANAL

ANALYZE THE TEST RESULT.


SENFL7172L


WWW.DIGITALKHODRO.COM

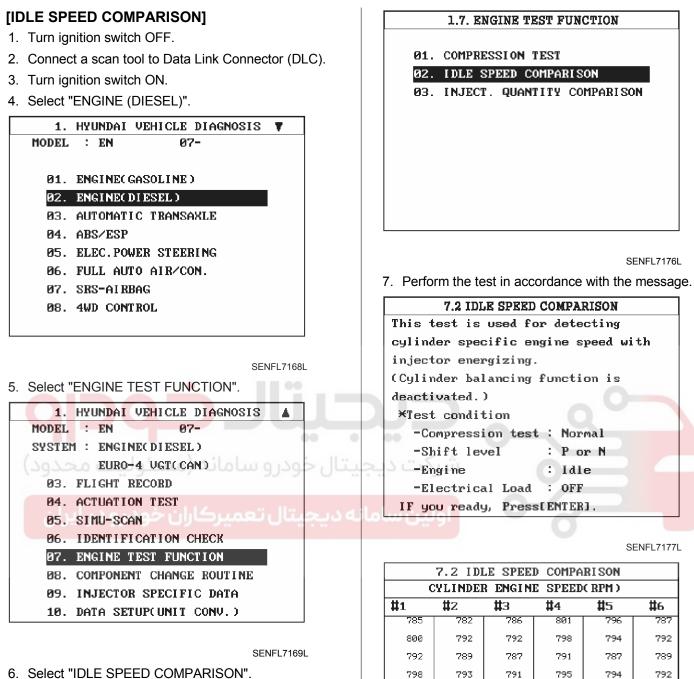
Engine Control System

7.1 COMPRESSION TEST							
	CYLINDER ENGINE SPEED(RPM)						
#1	# 2	# 3	# 4	#5	#6		
228	229	228	227	228	228		
228	229	228	227	227	227		
227	227	228	227	227	227		
227	227	226	226	225	227		
226	227	226	226	225	226		
226	226	225	226	225	226		
226	226	225	225	224	226		
	ANALYZE THE TEST RESULT.						
	<< >> AVG HELP						

SENFL7173L

SENFL7175L

If a cylinder's engine speed is higher than the other cylinders, the cylinder's compression pressure is low.


FL-63

021-62999292

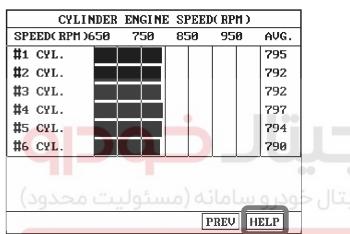
021-62999292

FL-64

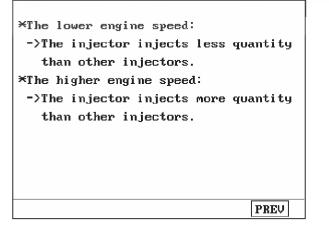
Fuel System

ANAL

ANALYZE THE TEST RESULT.


6. Select "IDLE SPEED COMPARISON".

SENFL7178L


Engine Control System

	7.2 ID	LE SPEEI	D COMPA	RISON	
1	CYLINDE	R ENGIN	E SPEED	(RPM)	
#1	#2	#з	# 4	#5	#6
785	782	786	801	796	787
800	792	792	798	794	792
792	789	787	791	787	789
798	793	791	795	794	792
797	791	793	796	793	789
794	790	791	796	791	789
800	795	793	797	792	796
	ANALS	ZE THE	TEST R	ESULT.	
	<<	>>	AVG	F	IELP

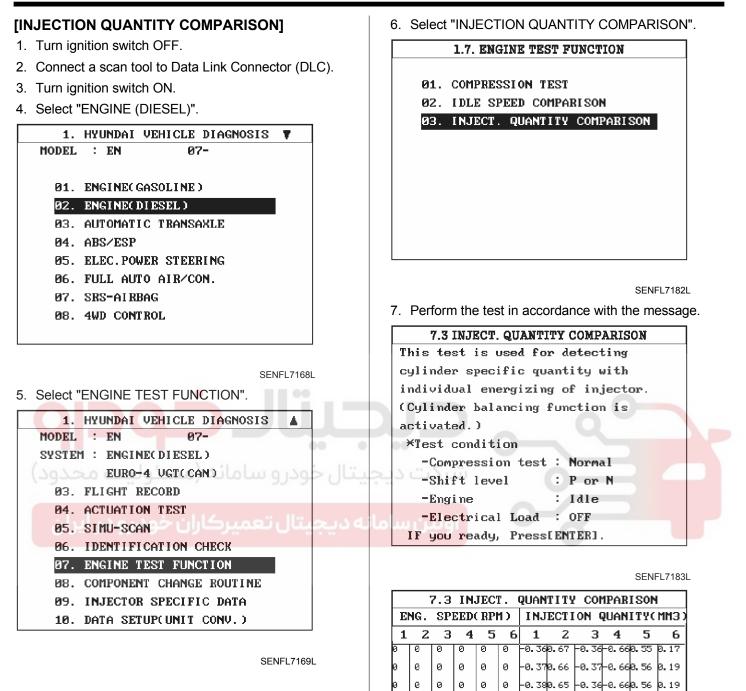
SENFL7179L

ا اولین سامانه دی<u>جیتا</u> تعمیرکاران خودرو در ایران SENFL7180L

SENFL7181L

WNOTICE

The injector in cylinder with significantly high (low) idle speed injects more (less) quantity than the other injectors.


021-62999292

FL-65

021-62999292

FL-66

Fuel System

0 0 0 0 0

0 0 0 0

0 0

0 0 0 0

ANAL

0 0 0

Ø

0

ANALYZE THE TEST RESULT.

WWW.DIGITALKHODRO.COM

021-62999292

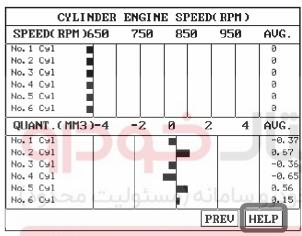
SENFL7184L

-0.390.64 -0.37-0.650.56 0.20

-0.390.64 -0.37-0.640.57 0.20

-0.390.63 -0.37-0.640.57 0.21

-0.390.63 -0.37-0.640.56 0.21


021-62999292

FL-67

Engine Control System

	7.3 INJECT. QUANTITY COMPARISON										
E	NG.	SPI	EEDO	RPI	1)	INJ	ECTI	ON C	QUAN	ITYC	MM3 :
1	2	3	4	5	6	1	2	3	4	5	6
0	0	0	0	0	0	-0.36	0.67	-0.36	-0.66	0.55	9.17
0	0	0	0	0	0	-0.37	0.66	-0.37	-0.66	0.56	0.19
ø	0	0	0	0	0	-0.38	0.65	-0.36	-0. 66	0.56	9.19
0	0	0	0	0	0	-0.39	0.64	-0.37	-0.65	0.56	9.20
0	0	0	Ø	0	0	-0.39	0.64	-0.37	-0.64	0.57	9.20
0	0	0	0	0	0	-0.39	0.63	-0.37	-0.64	0.57	9.21
0	0	0	ø	0	0	-0.39	0.63	-0.37	-0. 64	0.56	Ø. 21
	ANALYZE THE TEST RESULT.										
	<< >> AVG HELP						P				

SENFL7185L

اولین ساما به دیجیتار تعمیرکاران خودرو در ایراز SENFL7186L

*The positive correction value: ->The fuel injection of the cylinder is less than that of other cylinder. *The negative correction value: ->The fuel injection of the cylinder is more than that of other cylinder. *Extreme correction value identifies a problematic injector. After replacing a injector with newone ,retest & confirm the engine condition PREV

SENFL7187L

* (+) correction value: Injection quantity is less than the others.

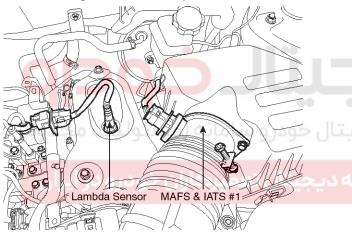
* (-) correction value: Injection quantity is more than the others.

* Very high correction value: The injector may have any fault. At this time, replace the injector with a new one and perform these tests again.

WWW.DIGITALKHODRO.COM

021-62999292

Fuel System


Mass Air Flow Sensor (MAFS)

Function And Operation Principle

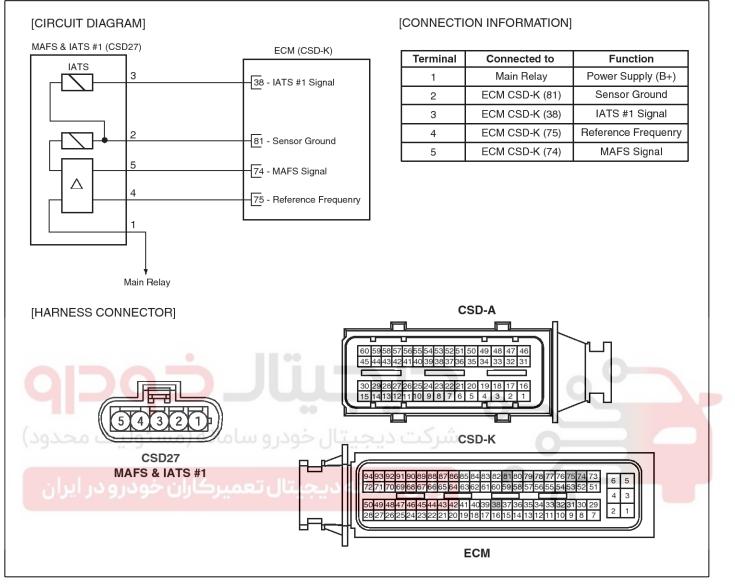
The Mass Air Flow Sensor (MAFS) is installed in air intake line and is a hot-film type sensor. This sensor detects mass of air flow and sends the amount to the ECM by frequency signal. A large amount of intake air represents acceleration or high load conditions while a small amount of intake air represents deceleration or idle. By using this signal, the ECM can control EGR amount and fuel injection amount more correctly.

After replacing the Mass Air Flow Sensor (MAFS), MUST perform the "COMPONENT CHANGE ROUTINE" procedure (Refer to "REPLACEMENT" procedure). Otherwise trouble related with engine performance or emission control may occur until ECM learning about the component is over.

Specification

At intake air temperature = $20^{\circ}C(68^{\circ}F)$

Air Flow (kg/h)	Frequency (kHz)
8	1.94 ~ 1.96
10	1.98 ~ 1.99
15	$2.06 \sim 2.07$
75	2.72 ~ 2.75
160	3.36 ~ 3.41
310	4.44 ~ 4.53
640	7.66 ~ 8.01
800	10.13 ~ 11.17

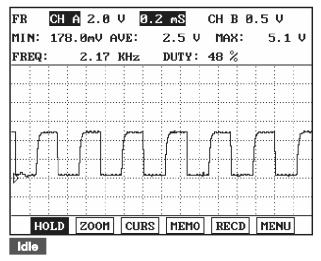

At intake air temperature = $-15^{\circ}C(5^{\circ}F)$

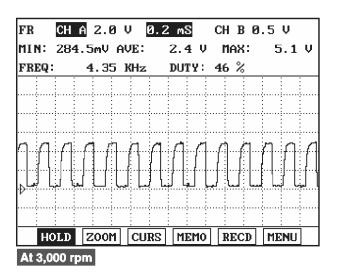
Frequency (kHz)
1.97 ~ 1.99
2.71 ~ 2.76
3.34 ~ 3.43
4.39 ~ 4.58

SENFL7101L

Engine Control System

Circuit Diagram


SENFL7120L


Fuel System

021-62999292

FL-70

Signal Waveform

SENFL7121L

Component Inspection

- 1. Check the MAFS visually.
 - Mounting direction
 - Any contamination, corrosion or damage on connector
 - Clogged or wet air cleaner
 - Deformed or blocked by any foreign material on _
 - MAFS' cylinder
- 2. Check any leakage on intake system and intercooler system.

WWW.DIGITALKHODRO.COM

021-62999292

FL-71

Engine Control System

Replacement

After replacing the Mass Air Flow Sensor (MAFS), MUST perform the "COMPONENT CHANGE ROUTINE" procedure. Otherwise trouble related with engine performance or emission control may occur until ECM learning about the component is over.

- 1. Turn ignition switch OFF.
- 2. Connect a scan tool to Data Link Connector (DLC).
- 3. Turn ignition switch ON.
- 4. Select "ENGINE (DIESEL)".

1. HYUNDAI VEHICLE DIAGNOSIS ▼ MODEL : EN 07 01. ENGINE(GASOLINE) 02. ENGINE(DIESEL) 03. AUTOMATIC TRANSAXLE 04. ABS/ESP 05. ELEC. POWER STEERING 06. FULL AUTO AIR/CON. 07. SRS-AIRBAG 08. 4WD CONTROL

5. Select "COMPONET CHANGE ROUTINE".

1. HYUNDAI VEHICLE DIAGNOSIS
MODEL : EN 07-
SYSTEM : ENGINE(DIESEL)
EURO-4 VGT(CAN)
03. FLIGHT RECORD
04. ACTUATION TEST
05. SIMU-SCAN
06. IDENTIFICATION CHECK
07. ENGINE TEST FUNCTION
08. COMPONENT CHANGE ROUTINE
09. INJECTOR SPECIFIC DATA
10. DATA SETUP(UNIT CONV.)

SENFL7189L

S

6. Select "AIR FLOW SENSOR CHANGE".

1.8 . COMPONENT	CHANGE ROUTINE
MODEL : EN	07-
SYSTEM : ENGINECDI	ESEL)
EURO-4 VG	T(CAN)
01. LAMBDA SENSOR C	HANGE
02. RAIL PRESSURE S	ENSOR CHANGE

03. AIR FLOW SENSOR CHANGE

- 04. SWIRL CONTROL VALVE CHANGE
- **05. PRESSURE REGULATING VALVE CHANGE**
- **06. ELECTRIC VGT ACTUATOR CHANGE**

SENFL7190L

7. Confirm the message, and then press "ENTER" key.

1.8 . COMPONENT CHANGE ROUTINE

AIR FLOW SENSOR CHANGE

IN THIS MODE, CAN RESET THE STORED DRIFT VALUES OF HOT FILM AIR FLOW SENSOR IN EEPROM.

PRESS LENTERI KEY.

SENFL7191L

8. Confirm the "Complete" message, and then turn ignition switch OFF.

1.8 . COMPONENT CHANGE ROUTINE

AIR FLOW SENSOR CHANGE

IN THIS MODE CAN RESET THE STORED D COMPLETED! AFTER 10 SEC. OR MORE

SINCE IG.KEY OFF, TURN IG.KEY ON

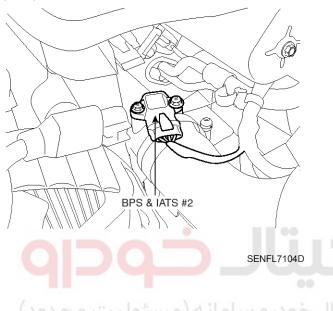
PRESS [ENTER] KEY.

SENFL7192L

9. Wait for more than 10 seconds, and then turn ignition switch ON.

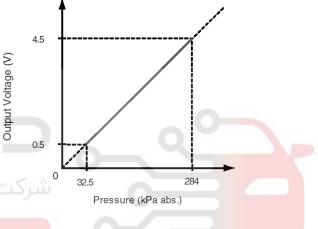
021-62999292

021- 62 99 92 92


FL-72

Fuel System

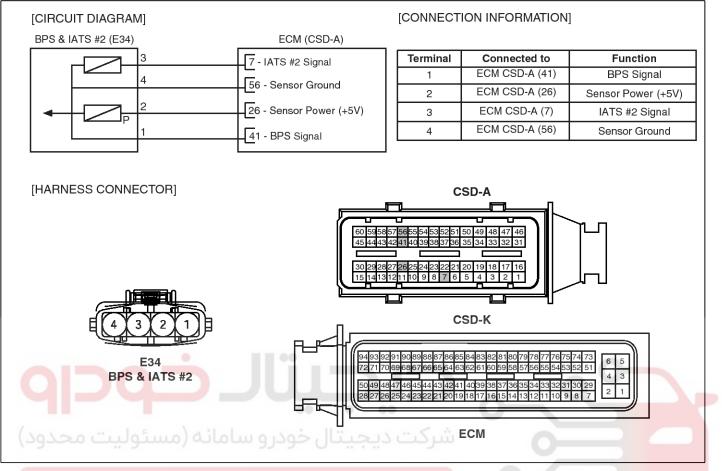
Boost Pressure Sensor (BPS)


Function And Operation Principle

The Boost Pressure Sensor (BPS) is installed on the intercooler assembly and measures the pressure of the compressed air in turbocharger. By using this signal, the ECM controls the Variable Geometry Turbocharger (VGT).

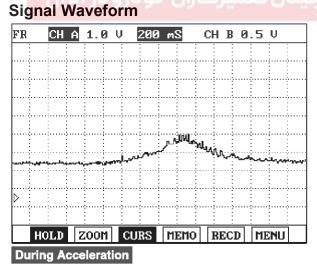
Specification

•	
Pressure (Kpa)	Output Voltage (V)
32.5	0.5
70	1.02 ~ 1.17
140	2.13 ~ 2.28
210	3.25 ~ 3.40
270	4.20 ~ 4.35
284	4.5



ا ولین ساما<mark>نه دیجیتال تعمیرکاران خودرو در ایران</mark>

EFQG038A


Engine Control System

Circuit Diagram

اولین سامانه دیجیتال تعمیرکاران خودرو در ایران

SENFL7122L

SENFL7123L

021-62999292

Fuel System

FL-74

Intake Air Temperature Sensor (IATS)

Function And Operation Principle

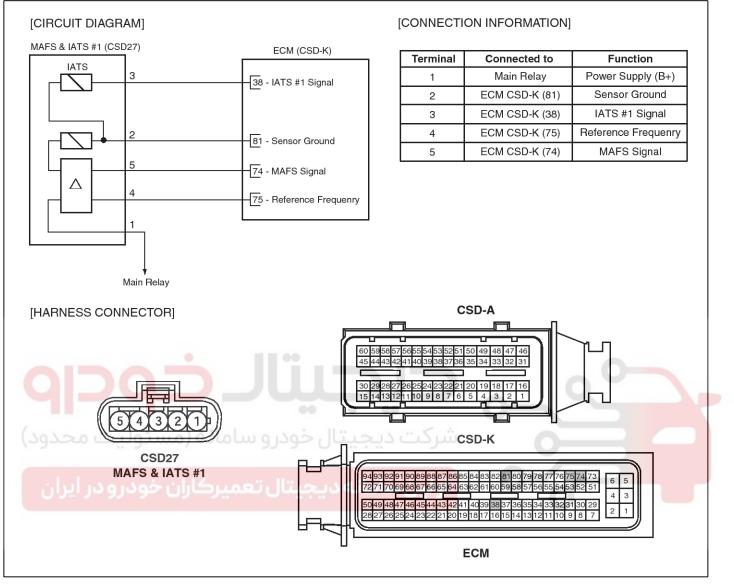
Intake Air Temperature Sensor (IATS) uses a Negative Temperature Characteristics (NTC) thermistor and senses intake air temperature. Two intake air temperature sensors are installed in this engine.

IATS #1 in Mass Air Flow Sensor (MAFS) and IATS #2 in Boost Pressure Sensor (BPS) are located in front of and behind turbo-charger respectively. IATS #1 senses air temperature entering turbo-charger and the other (IATS #2) does air temperature coming out from the turbo-charger. Comparing these air temperature values from both sensors, more accurate sensing of intake air temperature is possible. ECM uses these air temperature signals to perform EGR control correction and fuel injection quantity correction.

After replacing the Intake Air Temperature Sensor (IATS) #1, MUST perform the "COMPONENT CHANGE ROUTINE" procedure (Refer to "REPLACEMENT" procedure). Otherwise trouble related with engine performance or emission control may occur until ECM learning about the component is over.

SENFL7124L

Specification IATS #1 (MAFS)

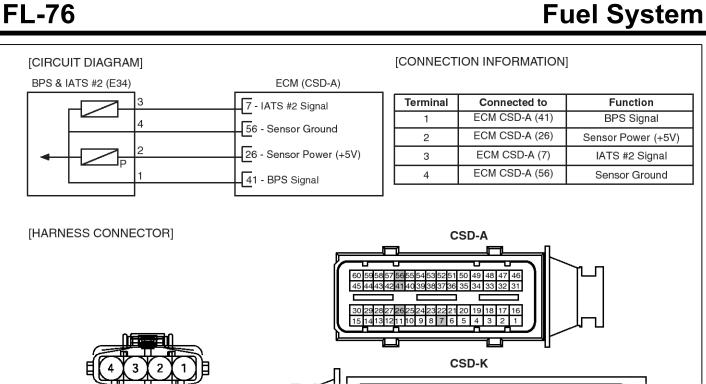

Temperature [°℃(°F)]	Resistance (^k Ω)
-40(-40)	35.14 ~ 43.76
-20(-4)	12.66 ~ 15.12
0(32)	5.12 ~ 5.89
20(68)	2.29 ~ 2.55
40(104)	1.10 ~ 1.24
60(140)	$0.57 \sim 0.65$
80(176)	0.31 ~ 0.37

IATS #2 (BPS)

Temperature [°C(°F)]	Resistance (^k Ω)
-40(-40)	40.93 ~ 48.35
-20(-4)	13.89 ~ 16.03
0(32)	$5.38 \sim 6.09$
20(68)	2.31 ~ 2.57
40(104)	1.08 ~ 1.21
60(140)	$0.54 \sim 0.62$
80(176)	0.29 ~ 0.34

Engine Control System

Circuit Diagram



SENFL7120L

Fuel System

3

SENFL7122L

FR	СН	A 1.0	V 5.	.0S	CH B 1	.0V	
····÷··				· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · ·	
-	1						
				· · · · · · · · · · · · · · · · · · ·		· · · · · · · · · · ·	
····.							
-	1						
						·····	
				· · · · · · · · · · · · · · · · · · ·	·····	·	
	IOLD	ZOOM	CURS	MEMO	RECD	MENU	

E34 BPS & IATS #2

Component Inspection

1. Turn ignition switch OFF.

ECM

- 2. Disconnect the MAFS (for IATS #1) or BPS (for IATS #2) connector.
- 3. Measure resistance between IATS signal terminal and sensor ground terminal.
- 4. Check that the resistance is within the specification.

Specification: Refer to "SPECIFICATION"

SENFL7125L

WWW.DIGITALKHODRO.COM

FL-77

Engine Control System

Replacement

After replacing the Intake Air Temperature Sensor (IATS) #1, MUST perform the "COMPONENT CHANGE ROUTINE" procedure. Otherwise trouble related with engine performance or emission control may occur until ECM learning about the component is over.

- 1. Turn ignition switch OFF.
- 2. Connect a scan tool to Data Link Connector (DLC).

1. HYUNDAI VEHICLE DIAGNOSIS 🔻

<u>й7-</u>

3. Turn ignition switch ON.

04. ABS/ESP

07. SRS-AIRBAG 08. 4WD CONTROL

MODEL : EN

4. Select "ENGINE (DIESEL)".

01. ENGINE(GASOLINE) 02. ENGINE(DIESEL)

03. AUTOMATIC TRANSAXLE

05. ELEC. POWER STEERING

06. FULL AUTO AIR/CON.

 T
 EURO-4 VGT(CAN)

 e
 Ø1. LAMBDA SENSOR CHANGE

 ol
 Ø2. RAIL PRESSURE SENSOR CHANGE

 Ø3. AIR FLOW SENSOR CHANGE

 Ø4. SWIRL CONTROL VALVE CHANGE

 Ø5. PRESSURE REGULATING VALVE CHANGE

 Ø6. ELECTRIC VGT ACTUATOR CHANGE

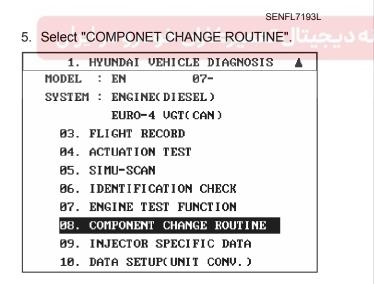
 SENFL7195L

SYSTEM : ENGINE(DIESEL)

1.8 . COMPONENT CHANGE ROUTINE

<u>й7-</u>

MODEL : EN


7. Confirm the message, and then press "ENTER" key.

1.8 . COMPONENT CHANGE ROUTINE

AIR FLOW SENSOR CHANGE

IN THIS MODE, CAN RESET THE STORED DRIFT VALUES OF HOT FILM AIR FLOW SENSOR IN EEPROM.

PRESS LENTERJ KEY.

SENFL7194L

6. Select "AIR FLOW SENSOR CHANGE".

SENFL7196L

8. Confirm the "Complete" message, and then turn ignition switch OFF.

1.8 . COMPONENT CHANGE ROUTINE

AIR FLOW SENSOR CHANGE

IN THIS MODE CAN RESET THE STORED D COMPLETED! AFTER 10 SEC. OR MORE

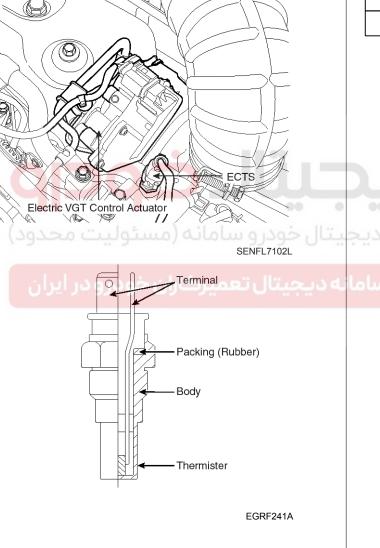
SINCE IG.KEY OFF, TURN IG.KEY ON

S

PRESS [ENTER] KEY.

SENFL7197L

9. Wait for more than 10 seconds, and then turn ignition switch ON.


Fuel System

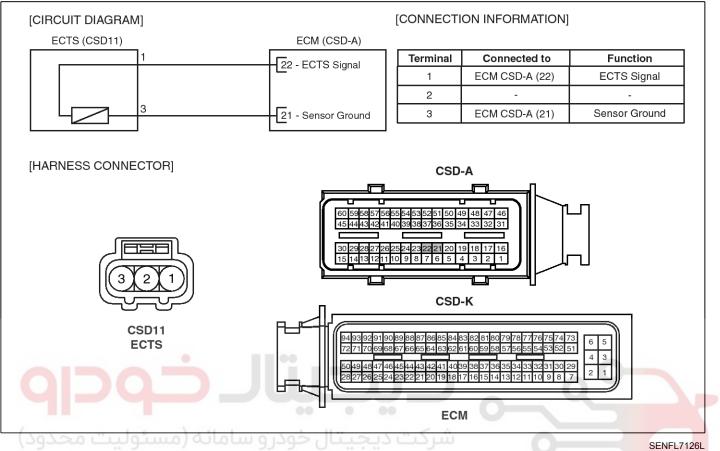
FL-78

Engine Coolant Temperature Sensor (ECTS)

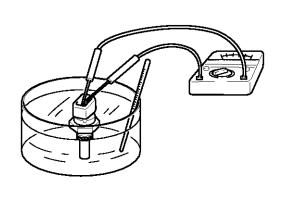
Function And Operation Principle

The Engine Coolant Temperature Sensor (ECTS) is located in the engine coolant passage of the cylinder for detecting the engine coolant temperature. The ECTS uses a thermistor which resistance is in inverse proportion to the temperature (NTC: Negative Temperature Coefficient). During cold engine operation, the ECM adjusts the injection amount and the timing by using this ECTS output signal to avoid engine stalling and improve drivability.

Specification


Temperature [°C(°F)]	Resistance (^k Ω)
-40(-40)	48.14
-20(-4)	14.13 ~ 16.83
0(32)	5.79
20(68)	2.31 ~ 2.59
40(104)	1.15
60(140)	0.59
80(176)	0.32

WWW.DIGITALKHODRO.COM


Engine Control System

Circuit Diagram

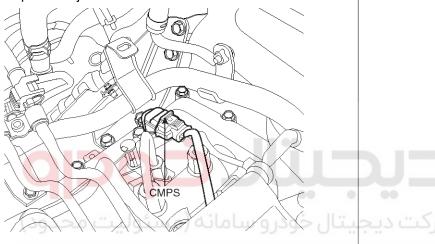
Component Inspection

- 1. Turn ignition switch OFF.
- 2. Disconnect the engine coolant temperature sensor connector.
- 3. Remove the sensor.
- 4. After immersing the thermistor of the sensor into engine coolant, measure resistance between ECTS signal terminal and ground terminal.

- 5. Check that the resistance is within the specification.
- Specification: Refer to "SPECIFICATION"

EFNF541A

FL-80


Fuel System

Camshaft Position Sensor (CMPS)

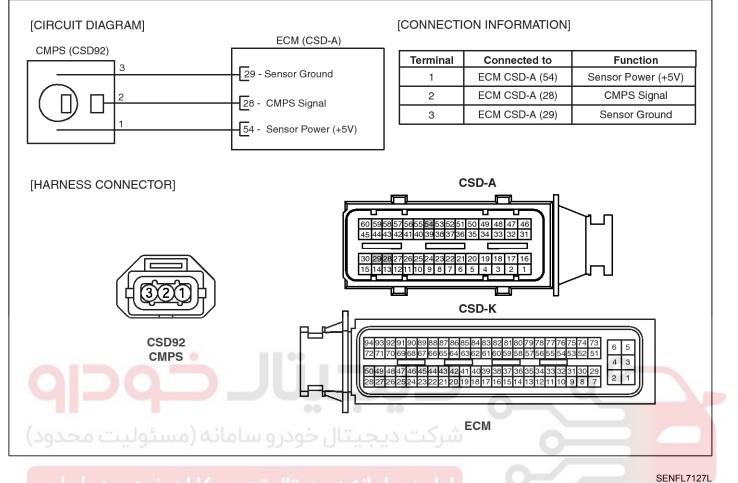
Function And Operation Principle

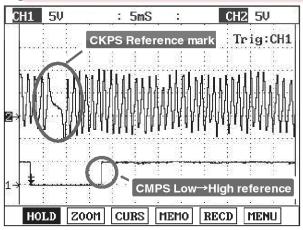
The Camshaft Position Sensor (CMPS) is installed on the cylinder head cover and detects the camshaft position. This is a hall sensor and has a hall-effect IC which output voltage changes when magnetic field is made on the IC with current flow.

It is related with Crankshaft Position Sensor (CKPS) and detects the piston position of the each cylinder which the CKPS can't detect. By using this signal, the ECM perceives the position of each cylinder and controls sequential injection.

SENFL7107D

Specification


Level	Output Voltage (V)
High	5
Low	0
Item	Specification
Air gap (mm)	0.5 ~ 1.5


WWW.DIGITALKHODRO.COM

Engine Control System

Circuit Diagram

Signal Waveform

SENFL7128L

Component Inspection

1. Check signal waveform of CMPS and CKPS using a scan tool.

Specification: Refer to "SIGNAL WAVE FORM"

FL-82

Fuel System

Crankshaft Position Sensor (CKPS)

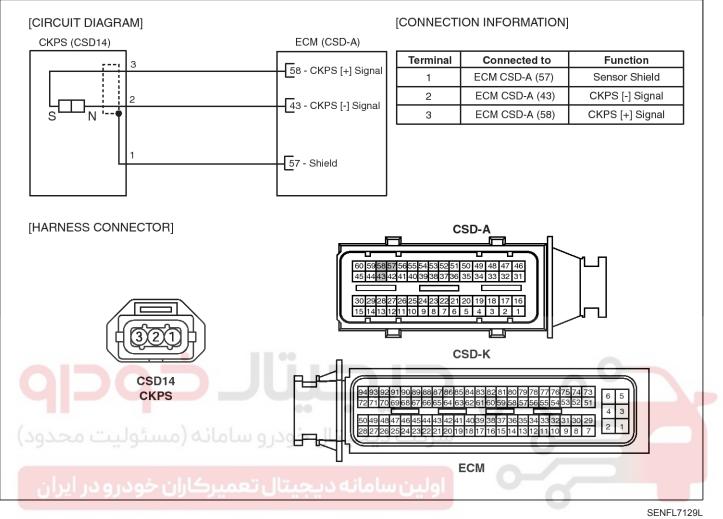
Function And Operation Principle

The Crankshaft Position Sensor (CKPS) is installed on the transaxle housing and detects the crankshaft position. By using this signal, the ECM can calculate the piston position of each cylinder and the engine speed for sequential injection.

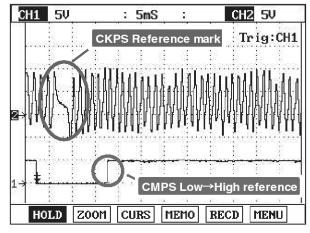
Specification

Items	Specification
Coil Resistance (Ω)	774 ~ 946Ω [20°C(68°F)]
Air Gap (mm)	0.5 ~ 1.5

C


شرکت دیج<mark>یتال خودرو سامانه (مسئولیت محدود</mark>)

اولین سامانه دیجیتال تعمیرکاران خودرو در ایران


WWW.DIGITALKHODRO.COM

Engine Control System

Circuit Diagram

Signal Waveform

SENFL7128L

Component Inspection

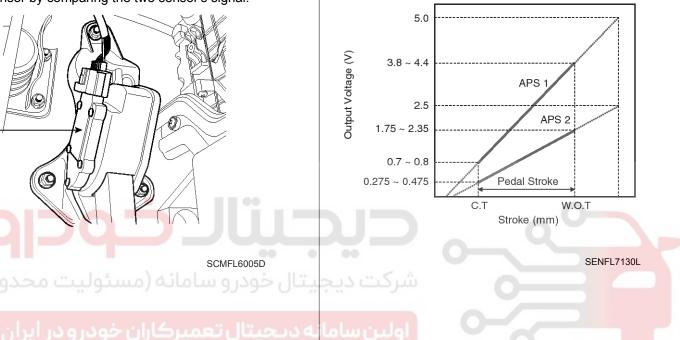
1. Check signal waveform of CMPS and CKPS using a scan tool.

Specification: Refer to "SIGNAL WAVE FORM"

Fuel System

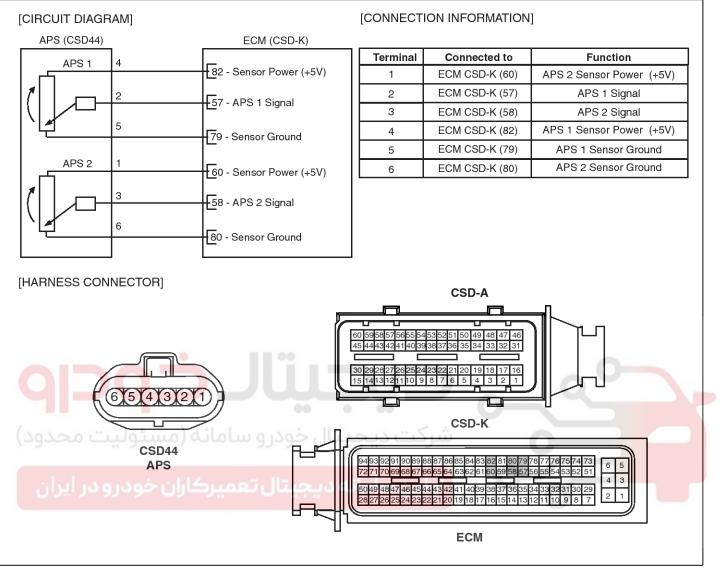
FL-84

APS

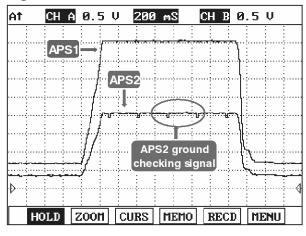

Accelerator Position Sensor (APS)

Function And Operation Principle

The Accelerator Pedal Position Sensor (APS) is installed on the accelerator pedal assembly and consists of the two potentiometers which have independent circuit (power, signal output, and ground) individually. This system makes the ECM recognize the driver's intention even if one sensor is broken. Also the ECM can diagnose the sensor by comparing the two sensor's signal.


Specification

Pedal Position	Output Voltage(V) [Vref = 5.0V]			
reual Position	APS1	APS2		
Released	0.7 ~ 0.8	0.275 ~ 0.475		
Fully depressed	3.8 ~ 4.4	1.75 ~ 2.35		



Engine Control System

Circuit Diagram

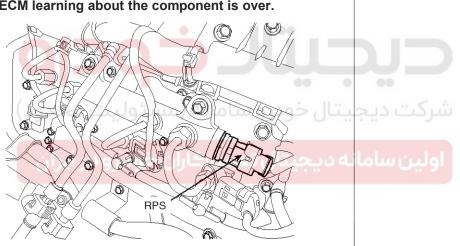
Signal Waveform

SENFL7132L

SENFL7131L

FL-86

Fuel System

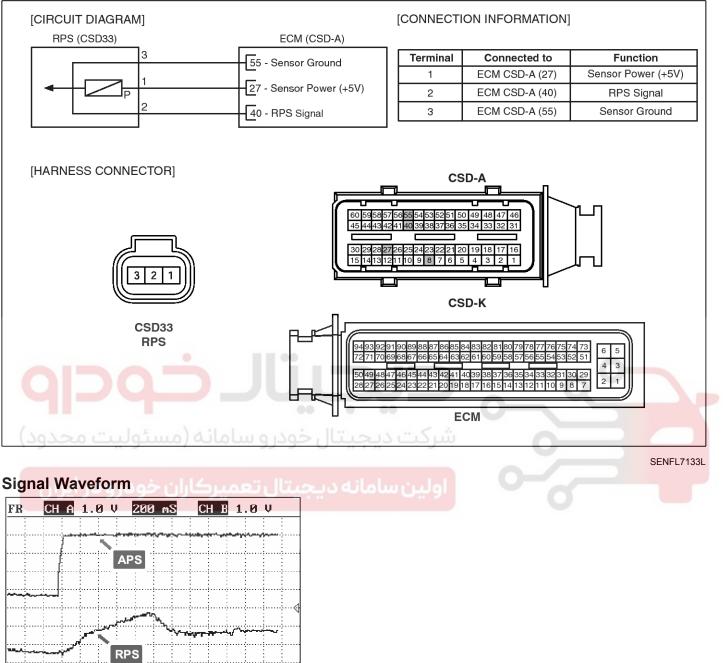

Rail Pressure Sensor (RPS)

Function And Operation Principle

The Rail Pressure Sensor (RPS) is installed at the end of the common rail (bank 1) and measures the instantaneous fuel pressure in the common rail. The sensing element (semiconductor device) built in the sensor converts the pressure to voltage signal. By using this signal, the ECM can control correct injection amount and timing. And it adjusts the rail pressure with the rail pressure regulator valve if the target pressure and the actual pressure calculated by the RPS output signal are different.

After replacing the Rail Pressure Sensor (RPS), MUST perform the "COMPONENT CHANGE ROUTINE" procedure (Refer to "REPLACEMENT" procedure). Otherwise trouble related with engine performance or emission control may occur until ECM learning about the component is over.

SENFL7108D


Specification

Condition	Rail pressure (bar)	Output Voltage (V)
Idle	$200 \sim 300$	0.9 ~ 1.2
3,000 rpm	$450 \sim 650$	1.5 ~ 1.9

Engine Control System

Circuit Diagram

HOLD ZOOM CL During Acceleration

Þ

SENFL7134L

MENU

CURS MEMO

RECD

021-62999292

FL-88

Replacement

After replacing the Rail Pressure Sensor (RPS), MUST perform the "COMPONENT CHANGE ROUTINE" procedure. Otherwise trouble related with engine performance or emission control may occur until ECM learning about the component is over.

- 1. Turn ignition switch OFF.
- 2. Connect a scan tool to Data Link Connector (DLC).

1. HYUNDAI VEHICLE DIAGNOSIS 🛛

- 3. Turn ignition switch ON.
- 4. Select "ENGINE (DIESEL)".

MODEL : EN 07-01. ENGINE(GASOLINE) 02. ENGINE(DIESEL) 03. AUTOMATIC TRANSAXLE 04. ABS/ESP

- 94. HD3/L3F
- 05. ELEC. POWER STEERING 06. FULL AUTO AIR/CON.
- 07. SRS-AIRBAG
- 08. 4WD CONTROL

SENFL7198L

5. Select "COMPONET CHANGE ROUTINE".

1. HYUNDAI VEHICLE DIAGNOSIS
MODEL : EN 07-
SYSTEM : ENGINE(DIESEL)
EURO-4 VGT(CAN)
Ø3. FLIGHT RECORD
04. ACTUATION TEST
05. SIMU-SCAN
06. IDENTIFICATION CHECK
07. ENGINE TEST FUNCTION
08. COMPONENT CHANGE ROUTINE
09. INJECTOR SPECIFIC DATA
10. DATA SETUP(UNIT CONV.)

SENFL7199L

6. Select "RAIL PRESSURE SENSOR CHANGE".

Fuel System

1.8COMPONENT CHANGE ROUTINEMODEL: EN07-SYSTEM: ENGINE(DIESEL)EURO-4VGT(CAN)01.LAMEDA SENSOR CHANGE02.RAIL PRESSURE SENSOR CHANGE03.AIR FLOW SENSOR CHANGE04.SWIRL CONTROL VALVE CHANGE05.PRESSURE REGULATING VALVE CHANGE

06. ELECTRIC VGT ACTUATOR CHANGE

SENFL7600L

7. Confirm the message, and then press "ENTER" key.

1.8 . COMPONENT CHANGE ROUTINE

RAIL PRESSURE SENSOR CHANGE(RPS)

IN THIS MODE, CAN SET THE FMA(FUEL MEAN ADAPTATION) VALUES AND ZERO SET THE OPERATION TIME FOR THE CHANGED RAIL PRESSURE SENSOR.

PRESS [ENTER] KEY.

SENFL7601L

8. Confirm the "Complete" message, and then turn ignition switch OFF.

1.8 . COMPONENT CHANGE ROUTINE

RAIL PRESSURE SENSOR CHANGE(RPS)

IN THIS MODE CON SET THE EMOLEUFI M COMPLETED! AFTER 10 SEC. OR MORE T

T SINCE IG.KEY OFF, TURN IG.KEY ON

PRESS [ENTER] KEY.

SENFL7602L

9. Wait for more than 10 seconds, and then turn ignition switch ON.

Engine Control System

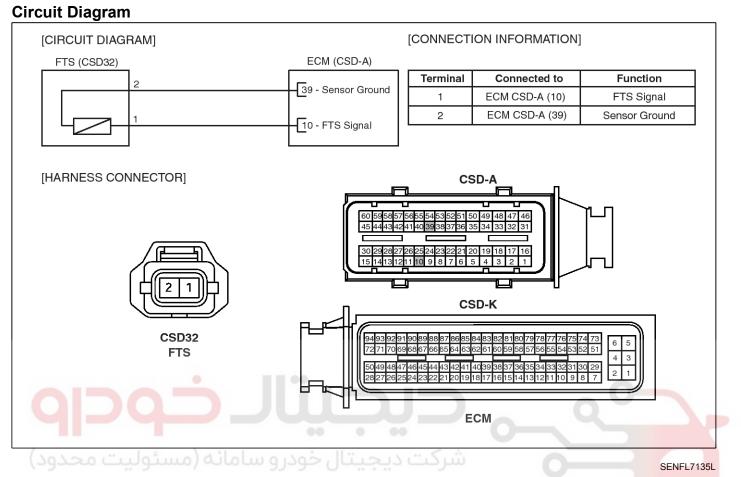
FL-89

Fuel Temperature Sensor (FTS)


Function And Operation Principle

The Fuel Temperature Sensor (FTS) is installed on the high pressure fuel pump and measures the temperature of the fuel supplied from the fuel tank (via fuel filter). The FTS uses a thermistor which resistance is in inverse proportion to the temperature (NTC: Negative Temperature Coefficient). With this signal, the ECM can adjust the injection amount.

At high temperature, vapor-lock in fuel line or oil membrane destruction may appear. Especially oil membrane destruction deteriorates fuel's lubrication performance and it may damage the high pressure fuel pump and the injector.



Temperature [°C(°F)]	Resistance(^{kରୁ})
-10(14)	8.64 ~ 10.15
20(68)	$2.35 \sim 2.65$
80(176)	0.31 ~ 0.33
120(248)	0.11 ~ 0.12

Fuel System

Signal Waveform

FR CH	A 0.5 4	J) \ 5A	0 S (CH B 1	0 V 0.
···· .		÷i			
		i		ni na si	
	: :	: : :	: :	: : :	· · ·
		······	••••••	•••••••••••••••	
Þ					
► HOLD	ZOOM	CURS	MEMO	RECD	MENU

SENFL7136L

Component Inspection

1. Turn ignition switch OFF.

- 2. Disconnect the fuel temperature sensor connector.
- 3. Measure resistance between sensor signal terminal and ground terminal.
- 4. Check that the resistance is within the specification.

Specification: Refer to "SPECIFICATION"

Engine Control System

FL-91

Fuel Pressure Control Valve

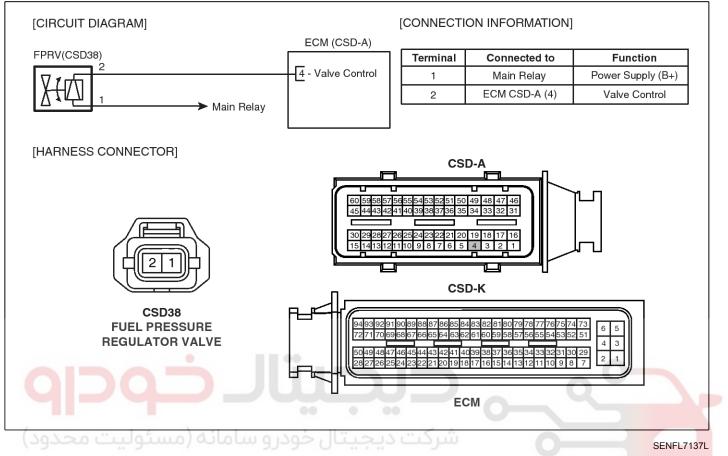
Function And Operation Principle

The Fuel Pressure Regulator Valve and the Rail Pressure Regulator Valve are installed on high pressure pump and common rail (bank 2) respectively. These valves control fuel inlet (feed) from fuel tank via fuel filter and outlet (return) to fuel tank of high pressure fuel circuit.

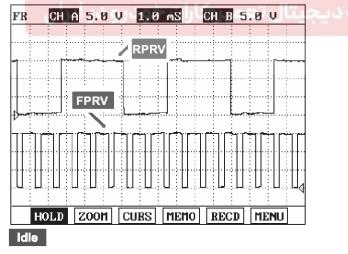
This system is called "Dual Fuel Pressure Control System" and can precisely and quickly control the fuel pressure in accordance with various engine conditions by controlling the fuel inlet and outlet simultaneously.

ltem	Specification
Coil Resistance (Ω)	2.9 ~ 3.15Ω [20°C(68°F)]

WWW.DIGITALKHODRO.COM


FL-92

Suel System


021-62999292

Fuel System

Circuit Diagram

Signal Waveform

SENFL7138L

Component Inspection

- 1. Turn ignition switch OFF.
- 2. Disconnect the fuel pressure regulator valve connector.
- 3. Measure resistance between terminal 1 and 2 of the valve.
- 4. Check that the resistance is within the specification.

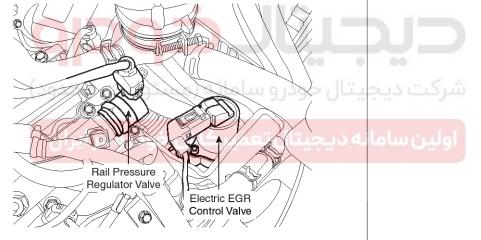
Specification: Refer to "SPECIFICATION"

Engine Control System

Rail Pressure Regulator Valve

Function And Operation Principle

The Fuel Pressure Regulator Valve and the Rail Pressure Regulator Valve are installed on high pressure pump and common rail (bank 2) respectively. These valves control fuel inlet (feed) from fuel tank via fuel filter and outlet (return) to fuel tank of high pressure fuel circuit.

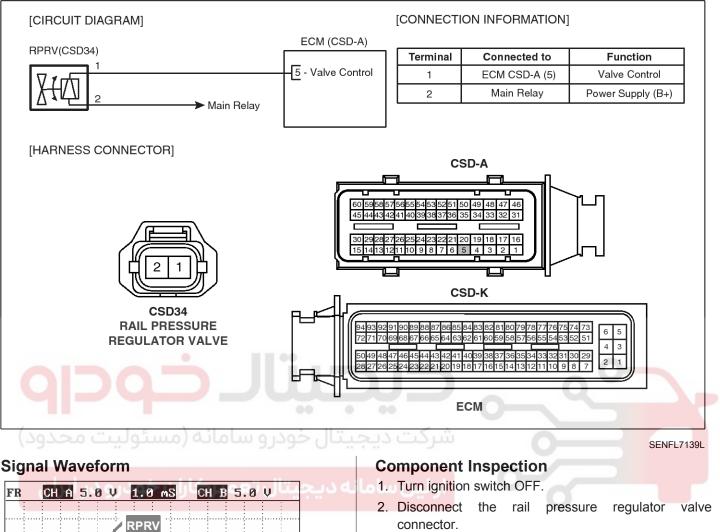

This system is called "Dual Fuel Pressure Control System" and can precisely and quickly control the fuel pressure in accordance with various engine conditions by controlling the fuel inlet and outlet simultaneously.

After replacing the Rail Pressure Regulator Valve, MUST perform the "COMPONENT CHANGE ROUTINE" procedure (Refer to "REPLACEMENT" procedure). Otherwise trouble related with engine performance or emission control may occur until ECM learning about the component is over.

Specification

Items	Specification
Coil Resistance (Ω)	3.42 ~ 3.78Ω [20°C(68°F)]
Operating Current (A)	0~1.7

SENFL7106L


WWW.DIGITALKHODRO.COM

FL-94

021-62999292

Fuel System

- 3. Measure resistance between terminal 1 and 2 of the valve.
- 4. Check that the resistance is within the specification.

Specification: Refer to "SPECIFICATION"

HOLD ZOOM CURS MEMO RECD MENU

SENFL7140L

FPRV

Idle

FL-95

Engine Control System

Replacement

After replacing the Rail Pressure Regulator Valve, MUST perform the "COMPONENT CHANGE ROUTINE" procedure. Otherwise trouble related with engine performance or emission control may occur until ECM learning about the component is over.

- 1. Turn ignition switch OFF.
- 2. Connect a scan tool to Data Link Connector (DLC).
- 3. Turn ignition switch ON.
- 4. Select "ENGINE (DIESEL)".

1. HYUNDAI VEHICLE DIAGNOSIS ▼ MODEL : EN 07 Ø1. ENGINE(GASOLINE) 02. ENGINE(DIESEL) Ø3. AUTOMATIC TRANSAXLE 04. ABS/ESP Ø5. ELEC, POWER STEERING

- 06. FULL AUTO AIR/CON.
- 07. SRS-AIRBAG
- 08. 4WD CONTROL

SENFL7603L

5. Select "COMPONET CHANGE ROUTINE".

1. HYUNDAI VEHICLE DIAGNOSIS	- 1
MODEL : EN 07-	
SYSTEM : ENGINE(DIESEL)	
EURO-4 VGT(CAN)	
03. FLIGHT RECORD	
04. ACTUATION TEST	
05. SIMU-SCAN	
06. IDENTIFICATION CHECK	
07. ENGINE TEST FUNCTION	
08. COMPONENT CHANGE ROUTINE	
09. INJECTOR SPECIFIC DATA	
10. DATA SETUP(UNIT CONV.)	

SENFL7604L

6. Select "PRESSURE REGULATING VALVE CHANGE".

 1.8
 COMPONENT CHANGE ROUTINE

 MODEL
 : EN
 07

 SYSTEM
 : ENGINE(DIESEL)
 EURO-4 VGT(CAN)

 01.
 LAMEDA SENSOR CHANGE
 02.

 02.
 RAIL PRESSURE SENSOR CHANGE
 03.

 03.
 AIR FLOW SENSOR CHANGE
 04.

 SWIRL CONTROL VALVE CHANGE
 05.
 PRESSURE REGULATING VALVE CHANGE

06. ELECTRIC VGT ACTUATOR CHANGE

SENFL7605L

7. Confirm the message, and then press "ENTER" key.

1.8 . COMPONENT CHANGE ROUTINE

PRESSURE REGULATING VALVE CHANGE

IN THIS MODE, CAN RESET THE STORED LEARNING VALUES IN ECU.

PRESS [ENTER] KEY.

SENFL7606L

8. Confirm the "Complete" message, and then turn ignition switch OFF.

1.8 . COMPONENT CHANGE ROUTINE

PRESSURE REGULATING VALVE CHANGE

IN THIS MODE CAN RESET THE STORED COMPLETED! AFTER 10 SEC. OR MORE

SINCE IG.KEY OFF, TURN IG.KEY ON

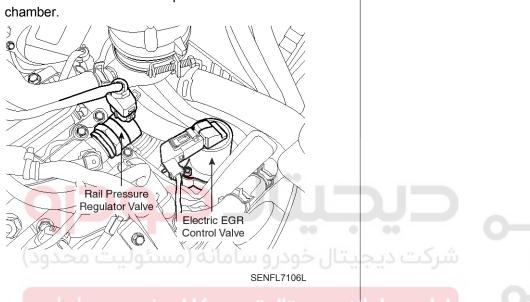
SENFL7607L

9. Wait for more than 10 seconds, and then turn ignition switch ON.

FL-96

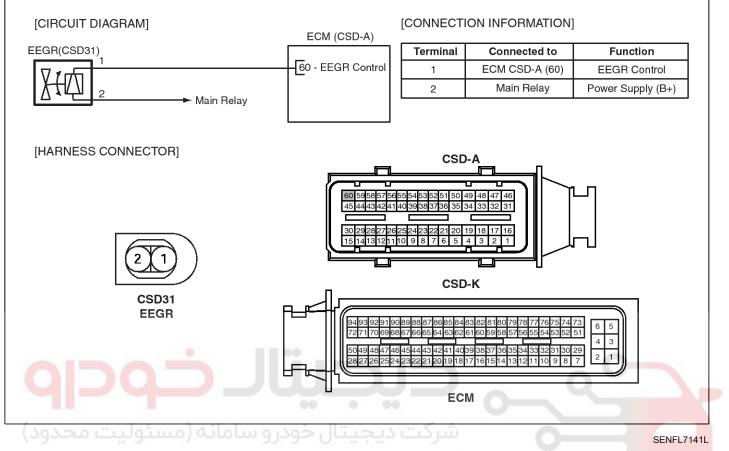
Fuel System

Electric EGR Control Valve


Function And Operation Principle

The Electric EGR Control Valve is installed in between the EGR cooler and the exhaust line and is a solenoid valve. This valve controls EGR (Exhaust Gas Recirculation) amount by the ECM's duty control signal depending on engine load and the need of intake air.

The Exhaust Gas Recirculation (EGR) system is used to add the exhaust gas to intake air in order to reduce an excess of air and the temperature in the combustion chamber.


Specification

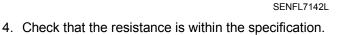
Item	Specification
Coil Resistance (Ω)	7.3~8.3Ω [20°C(68°F)]

Engine Control System

Circuit Diagram

Signal Waveform

nnno.	4.40.00			aa %	
FREQ:	140.85	Hz	DUTY:	92 %	
					\$**** ! ****\$***
					<u></u>
		: : :		÷ ÷	
			•••••		••••••••••••••••••••••••••••••••••••••
				÷ ÷	
		: :			: : :
p er de la constan te	مخمر وخده	ado na pad	, an in the i ne		inan di kaina
þ	;Ц;;	;;Ц;	·····	U;;	;;Ш;
HOL	D ZOOM	CURS	MEMO	RECD	MENU


.

FR

MIN:-

FREQ:

- Component Inspection
- 1. Turn ignition switch OFF.
- 2. Disconnect the electric EGR control valve connector.
- 3. Measure resistance between terminal 1 and 2 of the valve.

CHNL

MENU

CH B 0.5 V

15.1 V

MAX:

Specification: Refer to "SPECIFICATION"

VOLT

GND

CH A 5.0 V

140.85

HOLD TIME

Duty = 45%

73.0mV AVE:

2.0 mS

Hz

8.1 V

DUTY: 55 %

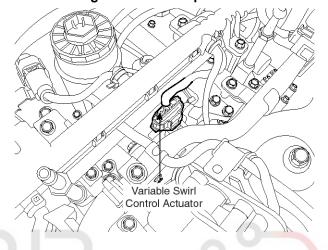
WWW.DIGITALKHODRO.COM

Fuel System

Variable Swirl Control Actuator

Function And Operation Principle

The Variable Swirl Control Actuator is installed in between the two intake manifolds (bank 1 and 2) and consists of a DC motor which actuates the swirl valve and a position sensor which detects the position of the swirl valve. This swirl system optimizes air flow entering into combustion chamber of each cylinder in accordance with the various engine conditions.


[At High Speed or High Load] Swirl valve opening \rightarrow Swirl amount decreasing \rightarrow Swirl effect increasing \rightarrow Pumping loss decreasing \rightarrow Engine power increasing

[At Low/Middle Speed or Low Load] Swirl valve closing

- \rightarrow Swirl amount increasing \rightarrow Air/fuel mixture increasing
- \rightarrow EGR amount enlarging \rightarrow Emission reducing

After replacing the Variable Swirl Control Actuator, MUST perform the "COMPONENT CHANGE ROUTINE" procedure (Refer to "REPLACEMENT" procedure). Otherwise trouble related with engine performance or emission control may occur until ECM learning about the component is over.

SENFL7107L

Items	High Speed or High Load	Low/Middle Speed or Low Load
Engine Speed	More than 3,000rpm	Less than 3,000rpm
Swirl Valve	Opening	Closing
Swirl Quantity	ین ساماله دید. Little	Much
Effect	Swirl effect increasing → Pumping loss decreasing → Engine power increasing	Air/Fuel mixture increasing → EGR amount enlarging → Emission reducing
Description illustration		
Fail-safe	Fail-safe Fully opened	

MOTICE

To prevent the swirl valve and its shaft from being stuck by foreign material and to learn maximum opening and closing position of the valve, the ECM fully opens and closes the valve twice when engine is being stopped.

021-62999292

FL-99

Engine Control System

Specification

Circuit Diagram

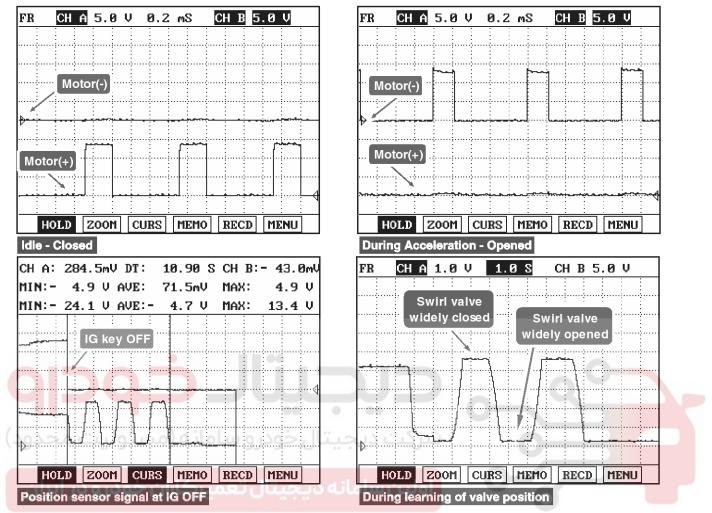
Motor

Item	Specification
Coil Resistance (Ω)	$3.4 \simeq 4.4\Omega$ [20 $^\circ C$ (68 $^\circ F$)]

Position Sensor

Item	Specification
Coil Resistance (Ω)	3.44 ~ 5.16 ^k Ω [20 ℃(68°F)]

[CIRCUIT DIAGRAM] [CONNECTION INFORMATION] VSCA (CSD40) ECM (CSD-A) Terminal Connected to Function Sensor 3 1 ECM CSD-A (23) Sensor Ground 51 - Sensor Power (+5V) 2 ECM CSD-A (52) Position Sensor Signal 2 52 - Position Sensor Signal 3 ECM CSD-A (51) Sensor Power (+5V) ECM CSD-A (50) 1 4 Motor [-] Cotnrol 23 - Sensor Ground 5 ECM CSD-A (49) Motor [+] Cotnrol Motor 4 50 - Motor [-] Cotnrol Μ 5 49 - Motor [+] Cotnrol [HARNESS CONNECTOR] CSD-A 49 47 45 4 CSD-K CSD40 VARIABLE SWIRL CONTROL ACTUATOR ECM


SENFL7143L

021- 62 99 92 92

FL-100

Fuel System

Signal Waveform

Component Inspection

- 1. Turn ignition switch OFF.
- 2. Disconnect the electric variable swirl control actuator connector.
- 3. Check that swirl valve is stuck by foreign material.
- 4. Measure resistance between motor (+) and (-) control terminals of the motor.
- 5. Check that the resistance is within the specification.

Specification: Refer to "SPECIFICATION"

- 6. Measure resistance between voltage supply terminal and ground terminal of the position sensor.
- 7. Check that the resistance is within the specification.

Specification: Refer to "SPECIFICATION"

SENFL7144L

021- 62 99 92 92

FL-101

Engine Control System

Replacement

After replacing the Variable Swirl Control Actuator, MUST perform the "COMPONENT CHANGE ROUTINE" procedure. Otherwise trouble related with engine performance or emission control may occur until ECM learning about the component is over.

- 1. Turn ignition switch OFF.
- 2. Connect a scan tool to Data Link Connector (DLC).
- 3. Turn ignition switch ON.
- 4. Select "ENGINE (DIESEL)".

1. HYUNDAI VEHICLE DIAGNOSIS ▼ MODEL : EN 07 01. ENGINE(GASOLINE) 02. ENGINE(DIESEL) 03. AUTOMATIC TRANSAXLE 04. ABS/ESP 05. ELEC.POWER STEERING 06. FULL AUTO AIR/CON.

- 07. SRS-AIRBAG
- 08. 4WD CONTROL

محدود SENFL7608L

5. Select "COMPONET CHANGE ROUTINE".

1. HYUNDAI VEHICLE DIAGNOSIS
MODEL : EN Ø7-
SYSTEM : ENGINE(DIESEL)
EURO-4 VGT(CAN)
Ø3. FLIGHT RECORD
04. ACTUATION TEST
05. SIMU-SCAN
06. IDENTIFICATION CHECK
07. ENGINE TEST FUNCTION
08. COMPONENT CHANGE ROUTINE
09. INJECTOR SPECIFIC DATA
10. DATA SETUP(UNIT CONV.)

SENFL7609L

6. Select "SWIRL CONTROL VALVE CHANGE".

 1.8
 COMPONENT CHANGE ROUTINE

 MODEL
 : EN
 07

 SYSTEM
 : ENGINE(DIESEL)
 EURO-4
 VGT(CAN)

 01.
 LAMEDA SENSOR CHANGE
 02.
 RAIL PRESSURE SENSOR CHANGE

 03.
 AIR FLOW SENSOR CHANGE
 03.
 AIR FLOW SENSOR CHANGE

 04.
 SWIRL CONTROL VALVE CHANGE
 05.
 PRESSURE REGULATING VALVE CHANGE

06. ELECTRIC VGT ACTUATOR CHANGE

SENFL7610L

7. Confirm the message, and then press "ENTER" key.

1.8 . COMPONENT CHANGE ROUTINE SWIRL CONTROL VALVE CHANGE

IN THIS MODE, CAN INITIATE OFFSET LEARNING FOR NEW VARIABLE SWIRL ACTUATOR.

PRESS LENTERI KEY.

SENFL7611L

8. Confirm the "Complete" message, and then turn ignition switch OFF.

1.8 . COMPONENT CHANGE ROUTINE SWIRL CONTROL VALVE CHANGE

IN THIS MODE, CAN INITIATE OFFSET IFARNING FOR NEL HARIARIE SHIPI COMPLETED! AFTER 10 SEC. OR MORE

SINCE IG.KEY OFF, TURN IG.KEY ON

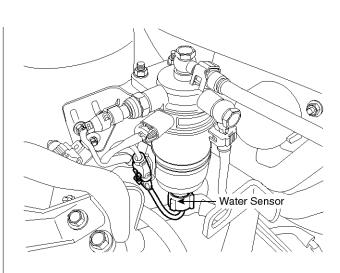
SENFL7612L

9. Wait for more than 10 seconds, and then turn ignition switch ON.

. . .

021-62999292

Fuel System

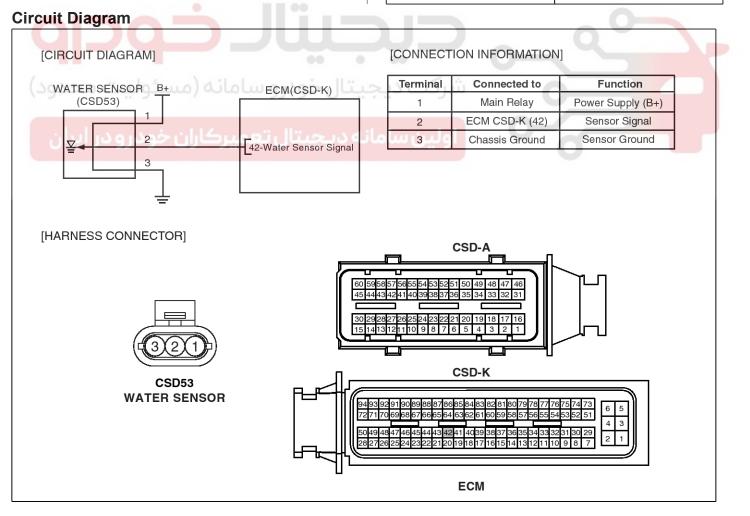

Water Sensor

Function And Operation Principle

The Water Sensor is installed on bottom end of fuel filter and detects presence of water in fuel. When the water amount reaches the predetermined level, the sensor sends the warning signal to the ECM.

MOTICE

Without presence of water, the lamp should flash for 2 seconds and turn off afterward in order that this system has normal condition.



SENFL7104L

Specification

Item	
Warning Level (cc)	

Specification 53 ~ 63

SENFL7145L

Engine Control System

Lambda Sensor

Function And Operation Principle

Lambda Sensor is installed on exhaust manifold and is a linear oxygen sensor. It senses oxygen density of exhaust gas in order to control EGR accurately through fuel correction and also limits smoke which is generated by reach air-fuel mixture at high engine load condition. ECM controls pumping current in order to fit λ -value from linear lambda sensor to 1.0.

- Lean air-fuel mixture (1.0 < λ < 1.1): ECM supplies pumping current to lambda sensor (+pumping current) and activates it for lambda sensor to have the characteristic at λ =1.0 (0.0 pumping current). With the value of pumping current supplied to lambda sensor, ECM detects lambda density of exhaust gas.
- Rich air-fuel mixture (0.9 < λ < 1.0): ECM takes away pumping current from lambda sensor (-pumping current) and deactivates it for lambda sensor to have the characteristic at λ =1.0 (0.0 pumping current). With the value of pumping current taken away from lambda sensor, ECM detects lambda density of exhaust gas.

This performance is the most active and fast at normal operating temperature (450 $^{\circ}$ C \sim 600 $^{\circ}$ C) thus, in order to reach normal operating temp. and last at that temperature, a heater (heating coil) is integrated with lambda sensor. The heater coil is controlled by ECM as Pulse With Modulator (PWM). The resistance of heater coil is low when coil is cold thus, current through it increases while resistance is high when coil is hot thus, current decreases. With this principle, temperature of lambda sensor is measured and lambda sensor heater operation varies based on the data.

After replacing the Lambda Sensor, MUST perform the "COMPONENT CHANGE ROUTINE" procedure (Refer to "REPLACEMENT" procedure). Otherwise trouble related with engine performance or emission control may occur until ECM learning about the component is over.

Specification

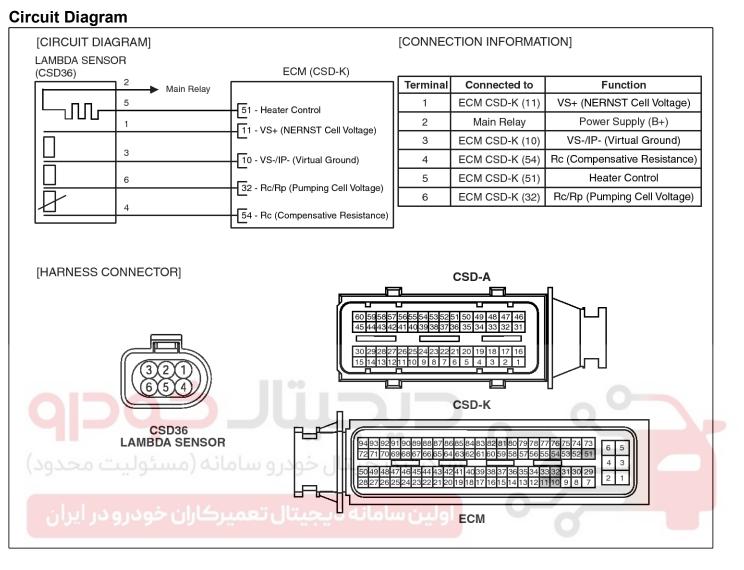
O)

Lambda Sensor

Sensor

λ Value (A/F Ratio)	Pumping Current (A)
0.65	-2.2
0.7	-1.8
0.8	-1.1
) ٥.9 شرکت دی	-0.5
1.01	0
<mark>م الولين سا</mark>	0.33
1.43	0.67
1.7	0.94
2.42	1.38
Air (Atmosphere)	2.54

MAFS & IATS #1


Heater

Temperature [°C(°F)]	Heater Resistance (Ω)
20(68)	2.4 ~ 4.0

FL-103

FL-104

Fuel System

SENFL7146L

Engine Control System

Replacement

After replacing the Lambda Sensor, MUST perform the "COMPONENT CHANGE ROUTINE" procedure. Otherwise trouble related with engine performance or emission control may occur until ECM learning about the component is over.

- 1. Turn ignition switch OFF.
- 2. Connect a scan tool to Data Link Connector (DLC).

1. HYUNDAI VEHICLE DIAGNOSIS 🛛

- 3. Turn ignition switch ON.
- 4. Select "ENGINE (DIESEL)".

MODEL : EN 07-01. ENGINE(GASOLINE) 02. ENGINE(DIESEL)

- 03. AUTOMATIC TRANSAXLE
- 04. ABS/ESP
- 05. ELEC. POWER STEERING
- 06. FULL AUTO AIR/CON.
- 07. SRS-AIRBAG
- 08. 4WD CONTROL

5. Select "COMPONET CHANGE ROUTINE".

1. HYUNDAI VEHICLE DIAGNOSIS
MODEL : EN 07-
SYSTEM : ENGINE(DIESEL)
EURO-4 VGT(CAN)
Ø3. FLIGHT RECORD
04. ACTUATION TEST
05. SIMU-SCAN
06. IDENTIFICATION CHECK
07. ENGINE TEST FUNCTION
Ø8. COMPONENT CHANGE ROUTINE
09. INJECTOR SPECIFIC DATA
10. DATA SETUP(UNIT CONV.)

SENFL7614L

6. Select "LAMBDA SENSOR CHANGE".

 1.8
 COMPONENT CHANGE ROUTINE

 MODEL
 :
 EN

 SYSTEM
 :
 ENGINE(DIESEL)

 EURO-4
 VGT(CAN)

 01.
 LAMBDA SENSOR CHANGE

 02.
 RAIL PRESSURE SENSOR CHANGE

 03.
 AIR FLOW SENSOR CHANGE

 04.
 SWIRL CONTROL VALUE CHANGE

- 05. PRESSURE REGULATING VALVE CHANGE
- 06. ELECTRIC VGT ACTUATOR CHANGE

SENFL7615L

7. Confirm the message, and then press "ENTER" key.

1.8 . COMPONENT CHANGE ROUTINE

LAMBDA SENSOR CHANGE(LSU)

IN THIS MODE, CAN SET ZERO THE LAM-BDA SENSOR PARAMETERS FOR THE CHAN-GED SENSOR.

PRESS LENTERI KEY.

SENFL7616L

8. Confirm the "Complete" message, and then turn ignition switch OFF.

1.8 . COMPONENT CHANGE ROUTINE

LAMBDA SENSOR CHANGE(LSU)

IN THIS MODE CAN SET ZERO THE LAM-COMPLETED! AFTER 10 SEC. OR MORE -

SINCE IG.KEY OFF, TURN IG.KEY ON

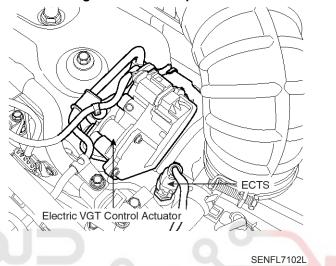
PRESS [ENTER] KEY.

SENFL7617L

9. Wait for more than 10 seconds, and then turn ignition switch ON.

FL-106

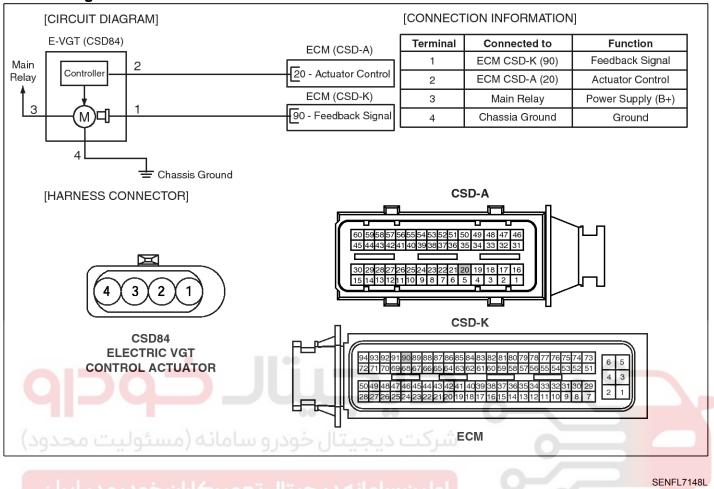
Fuel System


Electric VGT Control Actuator

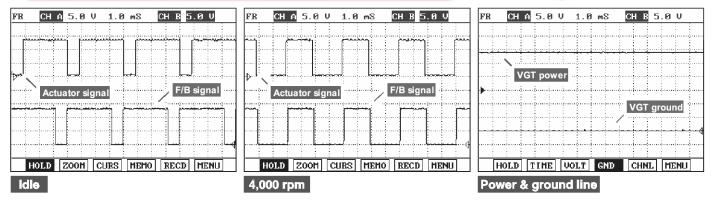
Function And Operation Principle

The Electric VGT Control Actuator is installed on the turbocharger. It operates the vain in the Variable Geometry Turbocharger (VGT) and regulates the compressed air amount by the ECM's PWM signal. This valve consists of a DC motor which actuates the vane, a 2-step gear which increases torque of the DC motor, a position sensor which detects status of the vane, an electric control unit which drives the DC motor, and a reset spring which resets the de-energized vane to its open position.

After replacing the Electric VGT Control Actuator, MUST perform the "COMPONENT CHANGE ROUTINE" procedure (Refer to "REPLACEMENT" procedure). Otherwise trouble related with engine performance or emission control may occur until ECM learning about the component is over.



اولین سامانه دیجیتال تعمیرکاران خودرو در ایران


شرکت دیج<mark>یتال خودرو سامانه (مسئولیت محدود</mark>

Engine Control System

Circuit Diagram

Signal Waveform

SENFL7149L

021-62999292

FL-108

Replacement

After replacing the Electric VGT Control Actuator, MUST perform the "COMPONENT CHANGE ROUTINE" procedure. Otherwise trouble related with engine performance or emission control may occur until ECM learning about the component is over.

- 1. Turn ignition switch OFF.
- 2. Connect a scan tool to Data Link Connector (DLC).
- 3. Turn ignition switch ON.
- 4. Select "ENGINE (DIESEL)".

1. HYUNDAI VEHICLE DIAGNOSIS ▼ MODEL : EN 07 01. ENGINE(GASOLINE) 02. ENGINE(DIESEL) 03. AUTOMATIC TRANSAXLE 04. ABS/ESP 05. ELEC. POWER STEERING 06. FULL AUTO AIR/CON. 07. SRS-AIRBAG

08. 4WD CONTROL

SENFL7618L

5. Select "COMPONET CHANGE ROUTINE".

1. HYUNDAI VEHICLE DIAGNOSIS	Ì
MODEL : EN 07-	
SYSTEM : ENGINE(DIESEL)	
EURO-4 VGT(CAN)	
Ø3. FLIGHT RECORD	
04. ACTUATION TEST	
05. SIMU-SCAN	
06. IDENTIFICATION CHECK	
07. ENGINE TEST FUNCTION	
08. COMPONENT CHANGE ROUTINE	
09. INJECTOR SPECIFIC DATA	
10. DATA SETUP(UNIT CONV.)	

SENFL7619L

6. Select "ELECTRIC VGT ACTUATOR CHANGE".

Fuel System

 1.8. COMPONENT CHANGE ROUTINE

 MODEL : EN
 07

 SYSTEM : ENGINE(DIESEL)

 EURO-4 VGT(CAN)

 01. LAMEDA SENSOR CHANGE

 02. RAIL PRESSURE SENSOR CHANGE

 03. AIR FLOW SENSOR CHANGE

 04. SWIRL CONTROL VALVE CHANGE

 05. PRESSURE REGULATING VALVE CHANGE

 06. ELECTRIC VGT ACTUATOR CHANGE

SENFL7620L

7. Confirm the message, and then press "ENTER" key.

1.8 . COMPONENT CHANGE ROUTINE

ELECTRIC VGT ACTUATOR CHANGE

IN THIS MODE, CAN LEARN THE STORED INITIAL VALUES OF IN VGT CONTROL UNIT.

PRESS [ENTER] KEY.

SENFL7621L

8. Confirm the "Complete" message, and then turn ignition switch OFF.

1.8 . COMPONENT CHANGE ROUTINE

ELECTRIC VGT ACTUATOR CHANGE

IN THIS MODE CAN LEARN THE STORED COMPLETED! AFTER 10 SEC. OR MORE

SINCE IG.KEY OFF, TURN IG.KEY ON

PRESS [ENTER] KEY.

SENFL7622L

9. Wait for more than 10 seconds, and then turn ignition switch ON.

Engine Control System

FL-109

Exhaust Gas Temperature Sensor

Description

[VGT]

Exhaust Gas Temperature Sensor (EGTS) #1 for VGT is installed on exhaust manifold and senses the termperature of exhaust gas flowing into the VGT.

[CPF]

Exhaust Gas Temperature Sensor (EGTS) #2 for CPF is installed on Catalyzed Particulate Filter (CPF) assembly and senses the temperature of exhaust gas flowing into the CPF.

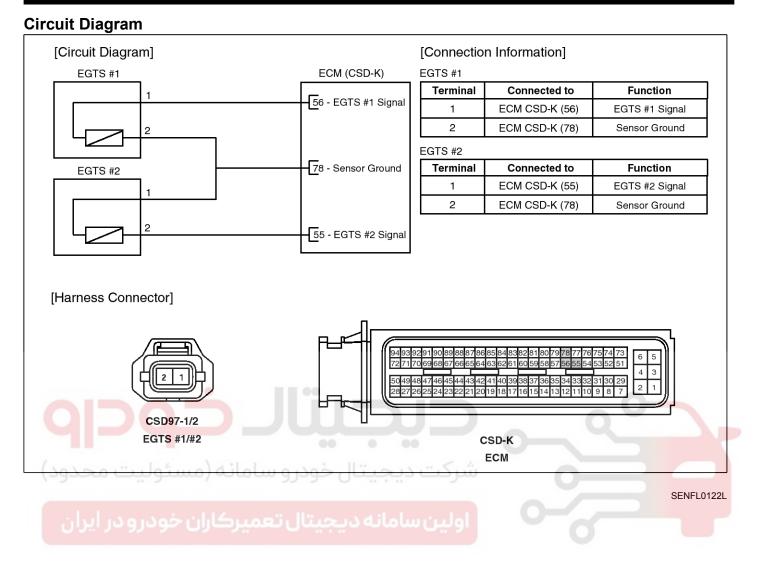
When pre-determined engine condition is set, ECM burns soot gathered in CPF with exhaust gas. At this time, the exhaust gas temperature is an important factor of engine condition.

Specification EGTS #1 [VGT]

Temperature [°C(°F)]	Resistance(^{kΩ})
100(212)	289.0 ~ 481.0
300(572)	5.30 ~ 6.61
600(1,112)	$0.35 \sim 0.38$
900(1,652)	0.08 ~ 0.09

EGTS #2 [CPF]

Temperature [°℃(°F)]	Resistance(^k Ω)
100(212)	289.0 ~ 481.0
300(572)	5.30 ~ 6.61
600(1,112)	$0.35 \sim 0.38$
900(1,652)	0.08 ~ 0.09


SENFL0121L

WWW.DIGITALKHODRO.COM

FL-110

021-62999292

Fuel System

WWW.DIGITALKHODRO.COM

021-62999292

Engine Control System

Signal Waveform

Sensor Theme 2Ch/4Ch Aux Review User Setting 21 s	
Reset Start \$ Name Cursor ViewAll Save (II I >>>> II 5s	5
📕 +8V Ch A Cur a: 4.88 V Avg : 4.77 V Cur b: 4.72 V 🗖	
	-
······································	
	-
ionfig.	
Configuration	
شرکت دیجیتال خودرو سامنه (مسئولیت محدود)	
ا معمیرکاران خودرو در ایران Fig.1	

Fig.1) 4.8V is outputted at EGTS output signal circuit, when exhaust gas temp. is approx.150 $^\circ\!C.$

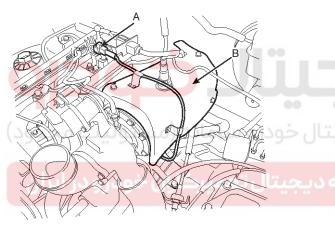
when exhaust gas temp. is $550\sim600$ °C at CPF regeneration, output voltage drops to $0.3\sim0.4V$.

SPBF29851L

021- 62 99 92 92

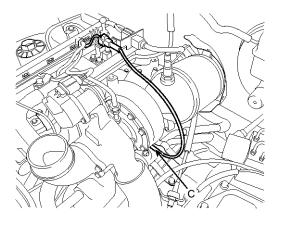
FL-112

Inspection


- 1. Turn ignition switch OFF.
- 2. Disconnect the exhaust gas temperature sensor #1/#2 connector.
- 3. Measure resistance between sensor signal terminal and ground terminal.
- 4. Check that the resistance is within the specification.

Specification: Refer to Specification section.

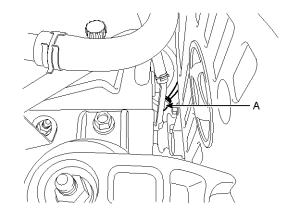
Removal


Exhaust Gas Temperature Sensor (EGTS) #1

- 1. Turn ignition switch OFF and disconnect the negative (-) battery cable.
- 2. Disconnect the exhaust gas temperature sensor #1 connector (A).
- 3. Remove the heat protector (B).

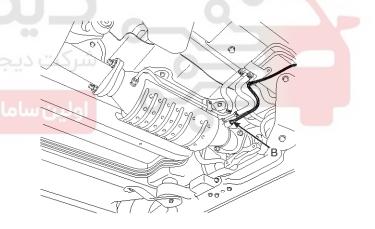
SENFL0112L

4. Remove the exhaust gas temperature sensor #1 (C).



SENFL0104L

Fuel System


Exhaust Gas Temperature Sensor (EGTS) #2

- 1. Turn ignition switch OFF and disconnect the negative (-) battery cable.
- 2. Disconnect the exhaust gas temperature sensor #2 connector (A).

SENFL0105L

3. Lift the vehicle and remove the exhaust gas temperature sensor #2 (B).

SENFL0113L

Installation

1. Installation is reverse of removal.

021-62999292

Engine Control System

FL-113

CPF Differential Pressure Sensor

Description

Differential Pressure Sensor (DPS) measures difference pressure between upstream and downstream exhaust gas of CPF. The ECM can calculate quantity of soot deposited in CPF with value from this sensor.

Specification

Differential Pressure [△ P] (kPa)	Output Voltage (V)
0	1
10	1.35
20	1.7
30	2.05
40	2.4
50	2.75
60	3.1
70	3.45
80	3.8
90	4.15
100	4.5

Circuit Diagram

CSD95

DPS

WWW.DIGITALKHODRO.COM

3	22 - Sensor Ground	Terminal	Connected to	Function
	1.2 I Har shall		ECM CSD-K (19)	Sensor Power (+5V)
	19 - Sensor Power (+5V)	2	ECM CSD-K (20)	DPS Signal
2	20 - DPS Signal	3	ECM CSD-K (22)	Sensor Ground
ness Connector]				

CSD-K

ECM

SENFL0123L

SENFL0124L

021-62999292

FL-114

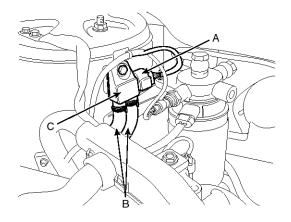
Replacement

After replacing the Differential Pressure Sensor (DPS), MUST perform the "Component Change Routine" procedure. Otherwise trouble related with engine performance or emission control may occur until ECM learning about the component is over.

Fuel System

- 1. Turn ignition switch OFF.
- 2. Connect a scan tool to Data Link Connector (DLC).
- 3. Turn ignition switch ON.
- 4. Select "Vehicle, Model year, Engine, System".
- 5. Select "Vehicle S/W Management".
- 6. Select "Component Change Routine".
- 7. Select "Differential Pressure Sensor Change".
- 8. Perform the procedure in accordance with the message.

SFDF29245E


Engine Control System

ifferential Pressure Sensor Change	
	[Differential Pressure Sensor Change] In this mode, can reset the differential pressure sensor parameters.
Component Change R ECU Change E Lambda Sensor Ch Rail Pressure Sens	Reset Complete !!! After Ig. key off, wait for 10 sec. befor next Ig. key on then press [OK] button.
- 🖻 Air Flow Sensor Ch 🖹 CPF Change 🖹 Differential Pressure 🖹 Swirl Control Valve (Ok
	Ok Cancel SFDF2924

Removal

- 1. Turn ignition switch OFF and disconnect the negative (-) battery cable.
- 2. Disconnect the CPF differential pressure sensor connector (A) and the hose (B).
- 3. Remove the CPF differential pressure sensor (C).

SENFL0111L

Installation

1. Installation is reverse of removal.

Fuel System

FL-116

Throttle Control Actuator

Description

The Throttle Control Actuator is mounted on throttle body of diesel engine and controls throttle valve according to PWM (Pulse With Modulation) signal from ECM.

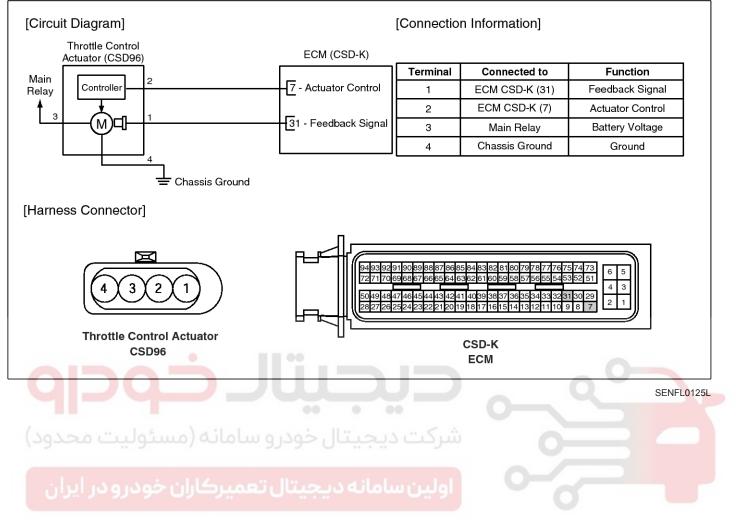
It consists of;

- a DC motor which actuates the throttle valve,
- a 2-step gear (transmission ratio = 1:40) which is located in between the DC motor and the throttle valve and increases torque of the DC motor,
- a position sensor which is a hall-effect sensor and detects status of the throttle valve,
- an electric control unit which is a micro-controller and drives the DC motor by the PWM (Pulse With Modulation) signal from the ECM,
- and a reset spring which resets the de-energized throttle valve to its open position.

Its function is described below:

- Anti-judder function: When engine is shut off, the ECM can prevent intake air from entering to intake manifold by fully closing the throttle valve for 1.5 seconds (95% < Duty < 97%) to reduce engine vibration.
- Intake air control for EGR: When exhaust gas pressure is equal to or lower than intake air pressure (for example, when low engine speed), the exhaust gas would not enter to the intake manifold. At this time, the ECM partially closes the throttle valve (5% < Duty < 94%) to reduce the intake air quantity. The intake air pressure thus is lower than the exhaust gas pressure.
- 3. Exhaust gas temperature control for CPF regeneration (Vehicle equipped with CPF System) : When the Catalyzed Particulate Filter (CPF) is need to regenerate, the ECM partially closes the throttle valve (5% < Duty < 94%) to reduce the intake air quantity. At this time, the air-fuel ratio would become rich and the exhaust gas temperature would be high enough to burn the soot inside the CPF.</p>

SENFL0106L


Specification

<u></u>			
Duty (%)	Throttle Valve Position		
5	Open		
5~94	~ 94 Normal operation (Partially open in p oportion to duty value)		
94	Closed		
94 ~ 95	Maintaining the last valid position		
95 ~ 97	Fully closed		

اولين ساه

Engine Control System

Circuit Diagram

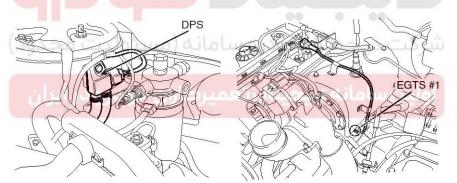
021-62999292

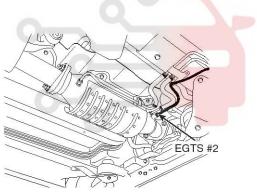
Fuel System

CPF (Catalyzed Particulate Filter)

Description

The Catalyzed Particulate Filter (CPF) system prevents Particulate Matter (PM) from being discharged to the atmosphere and consists of a filter assembly, two Exhaust Gas Temperature Sensor (EGTS) and a Differential Pressure Sensor (DPS).The filter is integrated in the catalytic converter assembly and has honeycomb cell structure which can filter the PM in the exhaust gas. While the exhaust gas passes the CPF, the PM is gathered in the CPF and the others (CO2, NO, etc.) are discharged to the atmosphere via muffler. This gathered PM in CPF is called "soot".

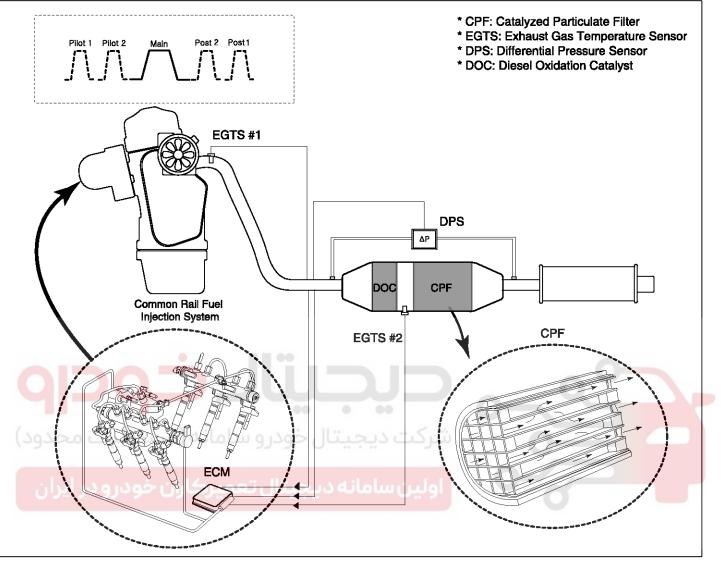

[CPF Regeneration]


If there are much soot in the CPF, the CPF must be regenerated. ECM can calculate amount of the soot by using the DPS signal, vehicle mileage or simulation data. If the ECM determines the CPF is need to regenerate, it will perform "Regeneration Procedure" when the vehicle condition is corresponded with the predetermined one (Regeneration Mode).

To burn the soot, the ECM injects additional fuel in the cylinders during exhaust stroke (two Post Injection) and increases the exhaust gas temperature to burning temperature of the soot (above 600° C). At this time, the soot are burn and its ash remains in the CPF as a result of the combustion.

[Regeneration Mode]

- 1. Mileage > 1,000km
- 2. Engine Speed: 1,000 ~ 4,000rpm
- 3. Engine Load = About 0.7bar [8mg/st]
- 4. Vehicle Speed > 5km/h
- 5. Engine Coolant Temperature > 40 ℃

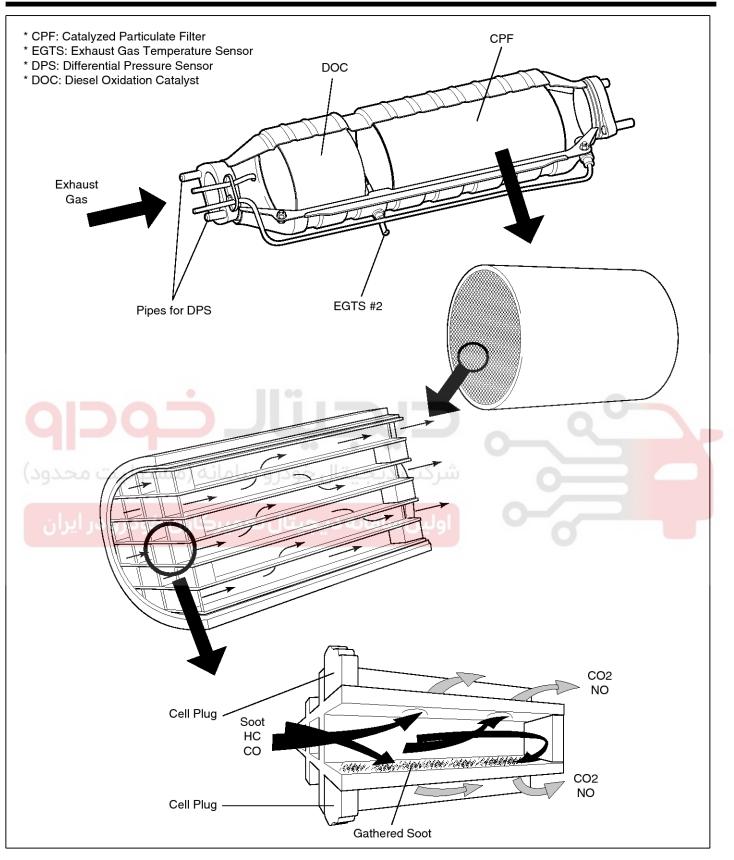


SENFL0116L

FL-119

Engine Control System

Schematic Diagram



SENFL0117L

021-62999292

FL-120

Fuel System

LFIG117A

FL-121

Engine Control System

CPF Regeneration

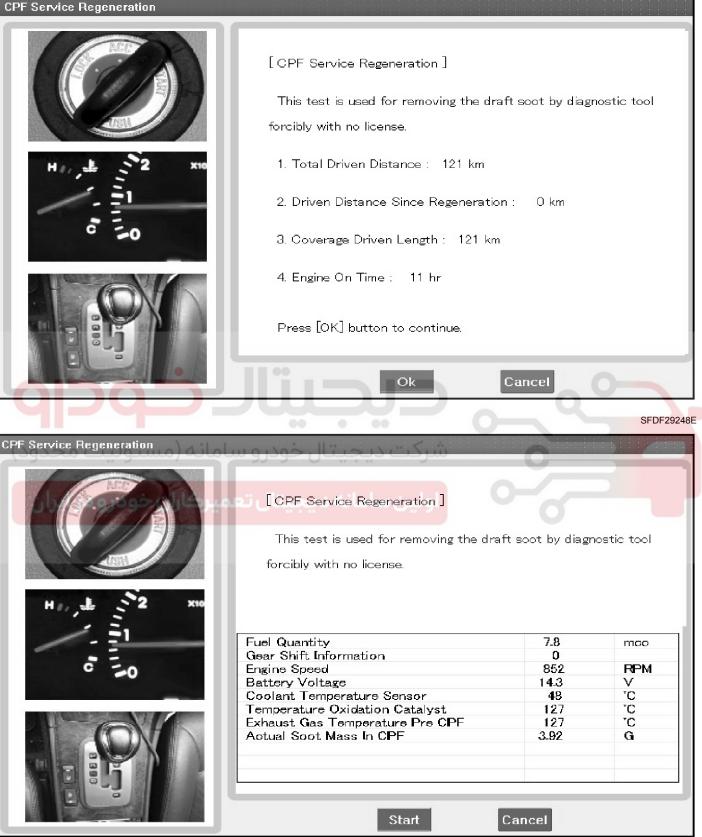
This procedures is to forcibly regenerate the CPF with scan tool when the CPF doesn't have been regenerated during driving. For example, if the vehicle has repeated "Low speed driving" or "Short distance driving", the CPF regeneration procedure cannot be proceeded because "Regeneration Mode" doesn't made.

Forcibly Regeneration Condition

- Engine coolant temperature: about 70 $^\circ\!\!\!C$
- Engine at idle
- P-range (A/T) or Neutral (M/T)
- Normal battery voltage
- Electrical fully load ON (A/C ON if equipped, Blower ON with maximum speed, Head Lamp ON, Wiper ON, Other Lamps ON, etc.)

The air conditioner's electrical load is very high. Accordingly, to make regeneration mode more quickly, turn it ON (If eqquipped).

- 1. Turn ignition switch OFF.
- 2. Connect a GDS to Data Link Connector (DLC).
- 3. Start engine at idle and P-range (A/T) or neutral (M/T).
- Apply electrical fully load to the vehicle (A/C ON, Blower ON with maximum speed, Head Lamp ON, Wiper ON, and Other Lamps ON, etc.)
- 5. Select "Vehicle, Model year, Engine, System".
- 6. Select "Vehicle S/W Management".
- 7. Select "CPF Service Regeneration".
- 8. Perform the test in accordance with the message.


CPF Service Regeneration	
	[CPF Service Regeneration] This test is used for removing the draft soot by diagnostic tool
ر تعمیر کران	forcibly with no license.
Har ale 2 x10	[Fulfillment Condition]
	1. Coolant Temperature : 70 ′C
0 10	2. Select Lever : P Range
	3. Engine Idle
	4. Electrical Fully Load On (A/C, Blower, Headlamp, Etc.)
	If you're ready, press [OK] button.
	Ok Cancel

SFDF29247E

021-62999292

FL-122

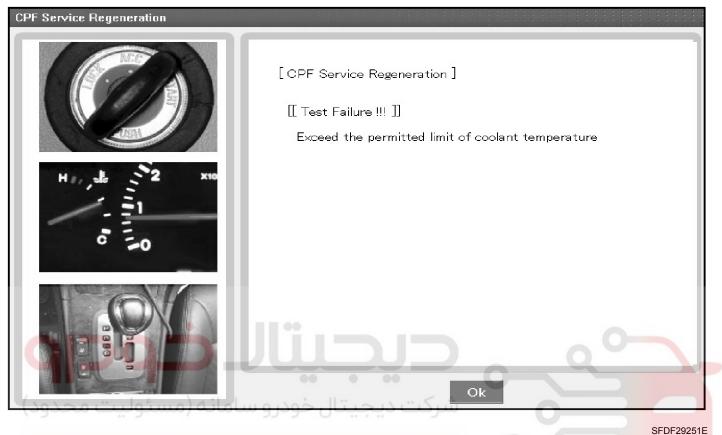
Fuel System

SFDF29249E

Engine Control System

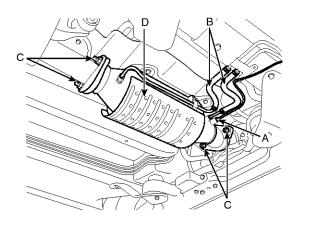
FL-123

PF Service Regeneration				
Houte 2 M	[CPF Service Regeneration] This test is used for removing the draft soot by diagnostic to forcibly with no license. [[Heating Stage !!!]]			
	Fuel Quantity Gear Shift Information Engine Speed Battery Voltage Coolant Temperature Sensor Temperature Oxidation Catalyst Exhaust Gas Temperature Pre CPF Actual Soot Mass In CPF	4.7 0 1176 14.3 62 127 127 3.92	moo RPM V TC TC TC G	
بالثانية مسئوليت محدود)	<u>Stop</u> شرکت دیجیتال خودرو سامان	Cancel	SFDF292	


021-62999292

Fuel System

FL-124


If the fulfillment condition is not satisfied, CPF regeneration test will fail.

Removal

- Turn ignition switch OFF and disconnect the negative

 (-) battery cable.
- 2. Lift the vehicle and support the CPF assembly with a jack.
- 3. Remove the exhaust gas temperature sensor #2 (A).
- 4. Disconnect the hoses (B) connected with Differential Pressure Sensor (DPS) from the CPF assembly.

5. Remove the mounting nuts (C) and remove the CPF (D) from the vehicle.

SENFL0114L

021-62999292

FL-125

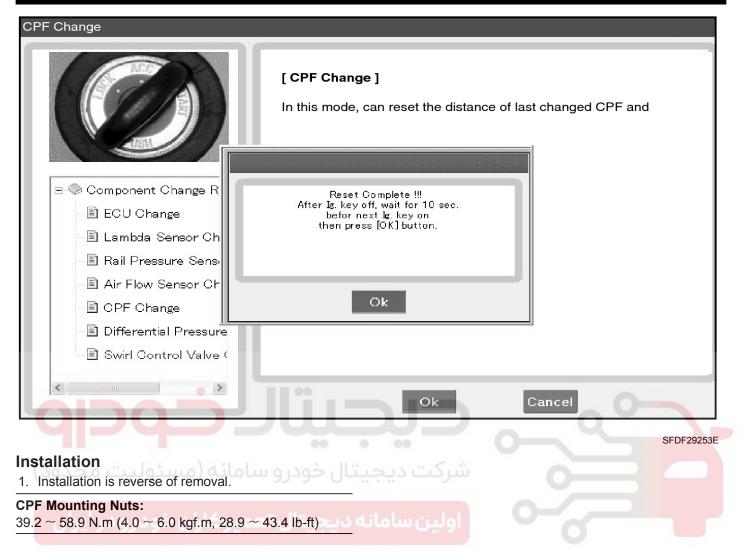
Engine Control System

Replacement

After replacing the CPF assembly, MUST perform the "Component Change Routine" procedure. Otherwise trouble related with engine performance or emission control may occur until ECM learning about the component is over.

- 1. Turn ignition switch OFF.
- 2. Connect a scan tool to Data Link Connector (DLC).
- 3. Turn ignition switch ON.
- 4. Select "Vehicle, Model year, Engine, System".
- 5. Select "Vehicle S/W Management".
- 6. Select "Component Change Routine".
- 7. Select "CPF Change".
- 8. Perform the procedure in accordance with the message.

SFDF29252E

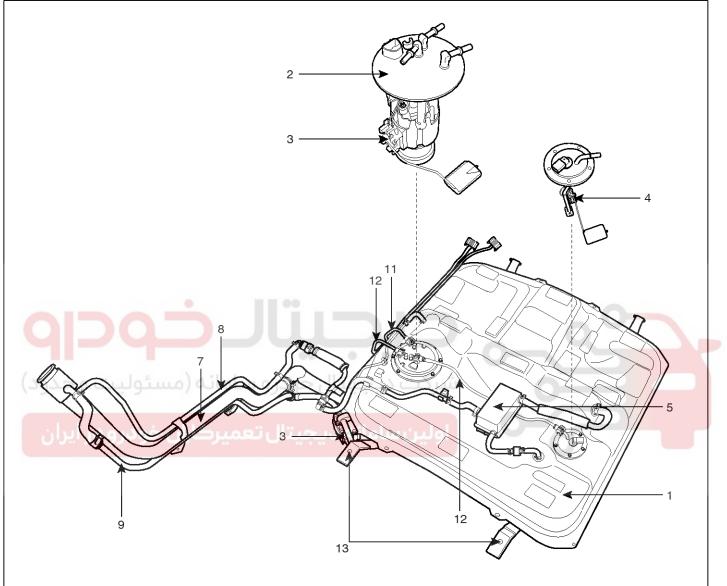

WWW.DIGITALKHODRO.COM

021-62999292

021-62999292

FL-126

Fuel System

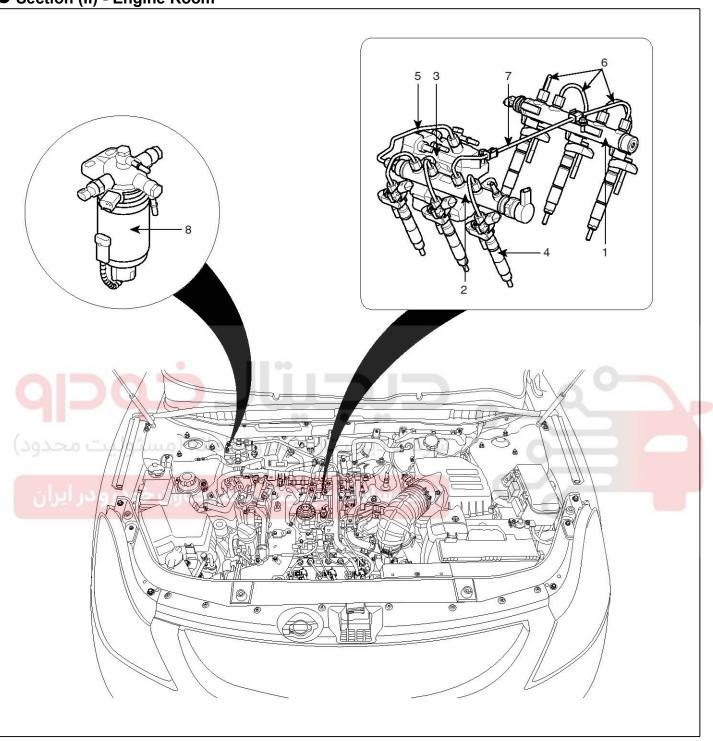


Fuel Delivery System

Fuel Delivery System

Component Location

Section (I) - Fuel Tank


SENFL9150L

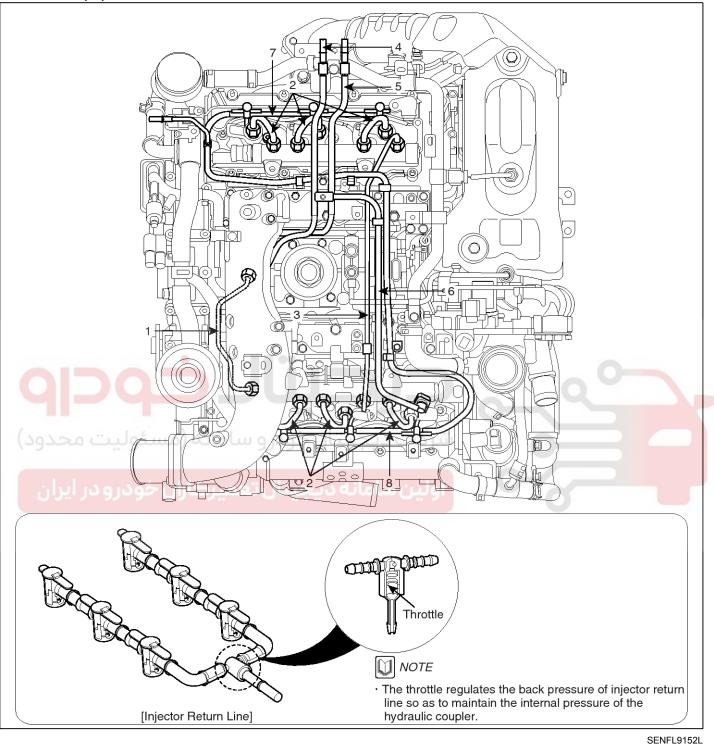
- 1. Fuel Tank
- 2. Fuel Pump (Low Pressure)
- 3. Fuel Sender
- 4. Sub Fuel Sender
- 5. Separator
- 6. Fuel Tank Air Filter
- 7. Fuel Filler Pipe

- 8. Leveling Pipe
- 9. Ventilation Pipe
- 10. Fuel Feed Tube
- 11. Fuel Return Tube
- 12. Suction Tube
- 13. Fuel Tank Band

Section (II) - Engine Room

Fuel System

SENFL0151L


- 1. Common Rail (Bank 1)
- 2. Common Rail (Bank 2)
- 3. High Pressure Fuel Pump
- 4. Injector

- 5. High Pressure Fuel Pipe (High Pressure Fuel Pump \leftrightarrow Common Rail)
- 6. High Pressure Fuel Pipe (Common Rail ↔ Injector)
- 7. High Pressure Fuel Pipe (Common Rail ↔ Common Rail)
- 8. Fuel Filter

Fuel Delivery System

FL-129

Section (III) - Fuel Line

021- 62 99 92 92

FL-130

Fuel System

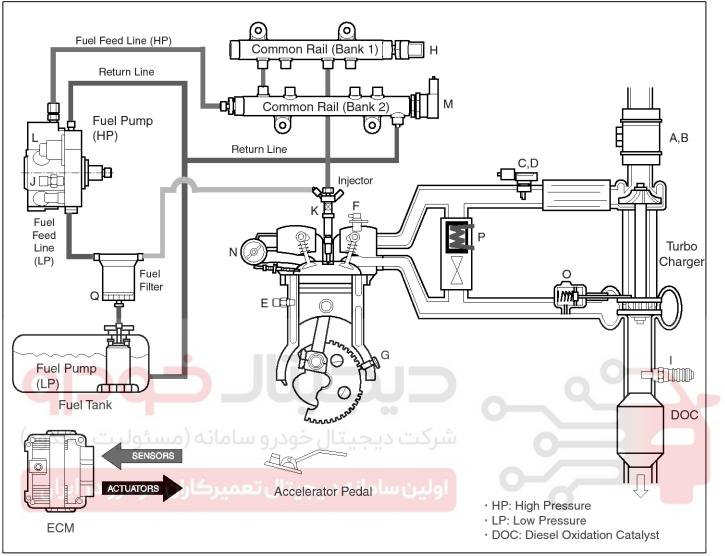
- High Pressure Fuel Pipe (High Pressure Fuel Pump ↔ Common Rail)
 High Pressure Fuel Pipe
- (Common Rail ↔ Injector)
- 3. High Pressure Fuel Pipe (Common Rail)
- 4. Fuel Feed Tube
 (Fuel Filter ↔ High Pressure Fuel Pump)

- 5. Fuel Return Tube
- (High Pressure Fuel Pump ↔ Fuel Tank)6. Fuel Return Tube
- (Common Rail ↔ Fuel Tank)
- 7. Fuel Return Tube
- (Injector [Bank 1] ↔ Fuel Filter)
- 8. Fuel Return Tube (Injector [Bank 2] ↔ Fuel Filter)

Fuel Delivery System

WARNING

As the Piezo-Injector operates under maximum DC 200V, there may be a risk of an electric shock caused by shorted control line etc. So when repairing the injector or its wiring, disconnect the battery negative (-) terminal from the battery and wait for about 30 seconds.


- Common Rail Fuel Injection System operates with extremely high pressure (approximately 1,600bar), so never perform any work on injection system with engine running or within 30 seconds after the engine stops.
- Keep cleanly the parts and the working area.
- Pay attention to a foreign substance.
- Just before installing injector, tube or hose, remove the protect-cap attached on them.
- Do not remove injector except for special case.
- When installing Injector
 - Wash the contact area of the injector and replace the O-ring with a new one.
 - Spread oil on the injector O-ring.
 - To protect damage caused by shock, vertically insert the injector into the cylinder head.
- When installing High Pressure Fuel Pipe
 - Do not use again the used high pressure fuel pipe.
 Install the flange nut correctly.

FL-131

Fuel System

Common Rail Fuel Injection System (CRDI)

SENFL9153L

- A. Mass Air Flow Sensor (MAFS)
- B. Intake Air Temperature Sensor (IATS) #1
- C. Boost Pressure Sensor (BPS)
- D. Intake Air Temperature Sensor (IATS) #2
- E. Engine Coolant Temperature Sensor (ECTS)
- F. Camshaft Position Sensor (CMPS)
- G. Crankshaft Position Sensor (CKPS)
- H. Rail Pressure Sensor (RPS)

- I. Lambda Sensor
- J. Fuel Temperature Sensor (FTS)
- K. InjectorL. Fuel Pressure Regulator Valve
- M. Rail Pressure Regulator Valve
- N. Variable Swirl Control Actuator
- O. Electric VGT Control Actuator
- P. Electric EGR Control Valve
- Q. Water Sensor

Fuel Delivery System

Low Pressure Fuel Circuit

Low Pressure Fuel Pump

The low pressure fuel pump is either an electric fuel pump with pre-filter, or a gear-type fuel pump. The pump draws the fuel from the fuel tank and continually delivers the required quantity of fuel in the direction of the high pressure fuel pump (via fuel filter).

Sub Fuel Sender

The sub fuel sender is installed on the fuel tank which has separated fuel storeroom (LH & RH) and detects the fuel quantity of RH's one.

The fuel stored in RH is flown into the LH by the assist pump involved in the fuel pump in LH (The sub fuel sender doesn't have an independent pump).

Fuel Filter

The fuel filter is located in between the low pressure fuel pump and the high pressure fuel pump and filters the fuel delivered from the fuel tank.

در و سامانه (مسئولیت محد

ه دیجیتال تعمیرکاران خودرو در ایران

High Pressure Fuel Circuit

High Pressure Fuel Pump

The high pressure fuel pump compresses fuel up to 1,600 bar and delivers the compressed fuel to the common rail.

Common Rail

The two common rails are installed on bank 1 and 2 and are connected with the high pressure fuel pump and the injectors by the high pressure fuel pipes. This rail stores the fuel compressed in the high pressure fuel pump. So that the two rails have same fuel pressure, the high pressure fuel pipe connects the two rails. The ECM controls the fuel pressure of the common rail by using the rail pressure sensor and the rail pressure regulator valve installed on the common rail (Bank 1) and (Bank 2) respectively.

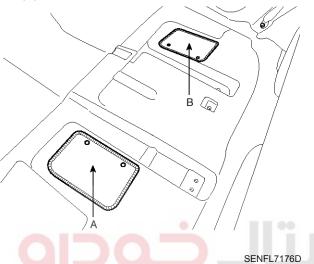
Injector

The injector injects the high pressure fuel stored in the common rail into the cylinder by the ECM control signal.

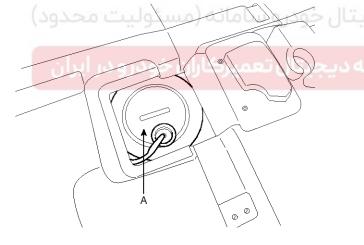
High Pressure Fuel Pump

The high pressure fuel pipe is a channel in high pressure fuel circuit consisting of the high pressure fuel pump, common rails, and injectors. It is a steel tube which can withstand high frequency generated when the fuel pressure reaches the maximum pressure or fuel injection stops.

The differences in length between the common rail and the individual injectors are compensated for by using slight or pronounced bends in the individual lengths of tubing. Nevertheless, the injection lines should be kept as short as possible.

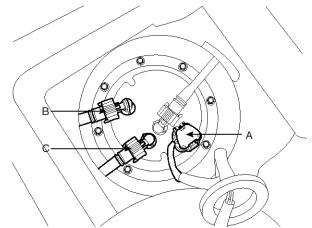

Fuel System

021-62999292

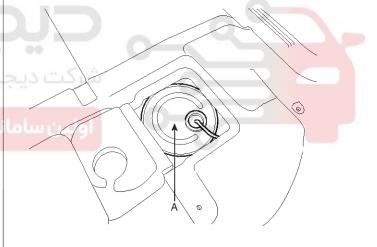

Fuel Tank

Removal

- 1. Turn ignition switch OFF and disconnect the negative (-) battery cable.
- 2. Remove the 2nd seat (Refer to "SEAT" in BD group).
- 3. Open the carpet (A) for the fuel pump and the carpet (B) for the sub fuel sender.



4. Remove the fuel pump service cover (A).

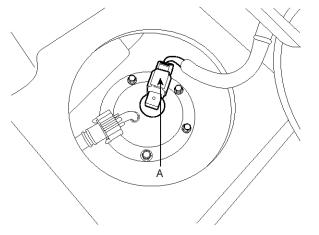

SENFL7177D

5. Disconnect the fuel pump connector (A).

SENFL7178D

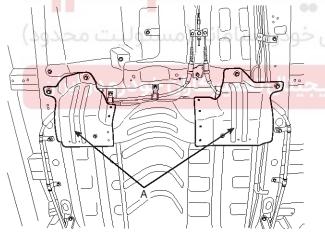
- 6. Disconnect the fuel feed tube quick-connector (B) and the fuel return tube quick-connector (C).
- 7. Remove the sub fuel sender service cover (A).

SENFL7179D

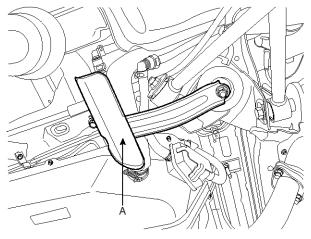

WWW.DIGITALKHODRO.COM

FL-135

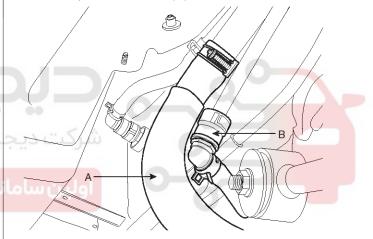
021-62999292


Fuel Delivery System

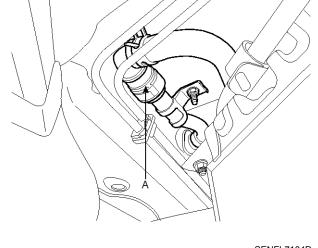
8. Disconnect the sub fuel sender connector (A).


SENFL7180D

- 9. Lift the vehicle.
- 10. Remove the muffler assembly (Refer to "INTAKE AND EXHAUST SYSTEM" in EM group).
- 11.Remove the propeller shaft [4WD only] (Refer to "PROPELLAR SHAFT" in DS group).
- 12. Support the fuel tank with a jack.
- 13. Remove the fuel tank cover (A).


SENFL7181D

14. Remove the bracket (A).


SENFL7182D

15. Disconnect the fuel filler hose (A) and the leveling tube quick-connector (B).

SENFL7183D

16. Disconnect the ventilation hose quick-connector (A).

SENFL7184D

WWW.DIGITALKHODRO.COM

021-62999292

17. Disconnect the fuel feed tube quick-connector (A)

FL-136

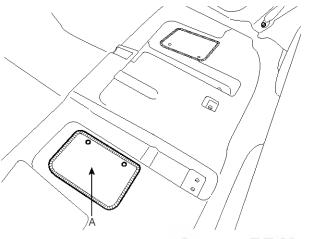
Fuel System

021-62999292

and the fuel return tube quick-connector (B). 1. Installation is reverse of removal. Fuel tank band installation nuts: \bigcirc $39.2 \simeq 54.0$ N.m (4.0 $\simeq 5.5$ kgf.m, 28.9 $\simeq 39.8$ lb-ft) \circ SENFL7185D 18. Unscrew the fuel tank bank installation nuts (A), and then remove the fuel tank from the vehicle. SENFL7186D

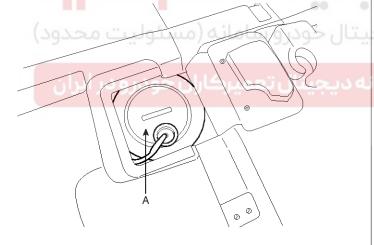
Installation

WWW.DIGITALKHODRO.COM

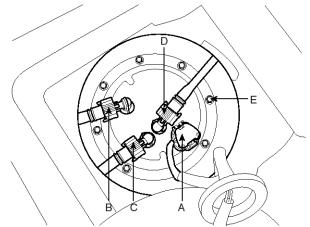

Fuel Delivery System

FL-137

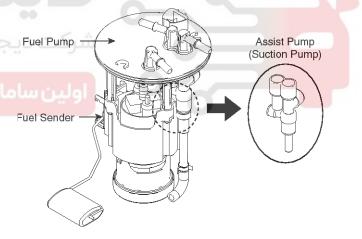
Fuel Pump


Removal

- Turn ignition switch OFF and disconnect the negative (-) battery cable.
- 2. Remove the 2nd seat (Refer to "SEAT" in BD group).
- 3. Open the carpet (A) for the fuel pump.


SENFL7187D

4. Remove the fuel pump service cover (A).


SENFL7177D

5. Disconnect the fuel pump connector (A).

SENFL7188D

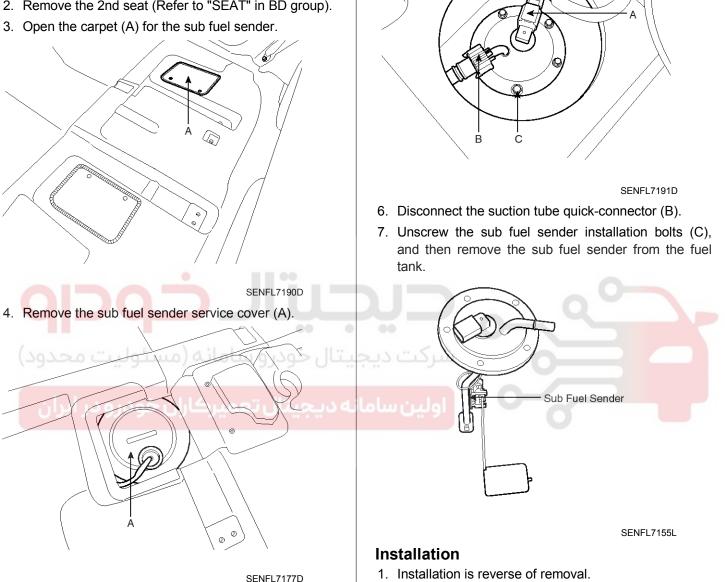
- 6. Disconnect the fuel feed tube quick-connector (B), the fuel return tube quick-connector (C), and the suction tube quick-connector (D).
- 7. Unscrew the fuel pump installation bolts (E), and then remove the fuel pump from the fuel tank.

SENFL7154L

Installation

1. Installation is reverse of removal.

Fuel pump installation bolts: 2.0 \sim 2.9 N.m (0.2 \sim 0.3 kgf.m, 1.4 \sim 2.2 lb-ft)


FL-138

Fuel System

Sub Fuel Sender

Removal

- 1. Turn ignition switch OFF and disconnect the negative (-) battery cable.
- 2. Remove the 2nd seat (Refer to "SEAT" in BD group).

5. Disconnect the sub fuel sender connector (A).

Fuel pump installation bolts: $2.0 \sim 2.9$ N.m (0.2 \sim 0.3 kgf.m, 1.4 \sim 2.2 lb-ft)

Fuel Delivery System

FL-139

Fuel Filter

Component Location

- 1. Fuel Filter
- 2. Heater
- 3. Water Sensor
- 4. Thermostat

- 5. Nipple (↔ Fuel Tank)
- 6. Nipple (↔ High Pressure Fuel Pump)
- 7. Nipple (↔ Injector Return Line)

SENFL9156L

Fuel System

FL-140

Removal

- 1. Turn ignition switch OFF and disconnect the negative (-) battery cable.
- 2. Disconnect the water sensor connector (A), the heater connector (B), and the thermostat connector (C).

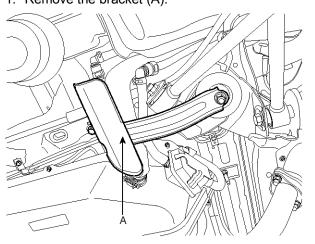
D SENFL7194D 3. Disconnect the fuel inlet tube quick-connector (D) and the fuel outlet tube quick-connector (E). 4. Disconnect the injector return tube quick-connector (A). SENFL7195D 5. Unscrew the fuel filter bracket installation nuts (B),

Installation

1. Installation is reverse of removal.

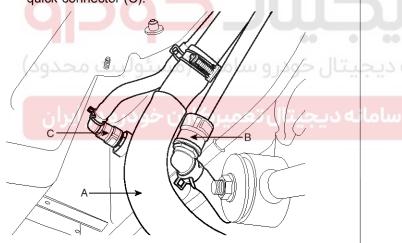
and then remove the fuel filter from the vehicle.

021-62999292


Fuel Delivery System

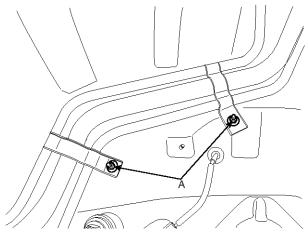
FL-141

Filler-Neck Assembly


Removal

1. Remove the bracket (A).

SENFL7196D


2. Disconnect the fuel filler hose (A), the leveling tube quick-connector (B), and the ventilation hose quick-connector (C).

SENFL7197D

3. Remove the left - rear wheel & tire and the wheel house.

4. Remove the filler-neck assembly after unscrewing the bracket mounting nuts (A).

SENFL7198D

Installation

1. Installation is reverse of removal.

021- 62 99 92 92

Fuel System

Accelerator Pedal and Cable

Removal

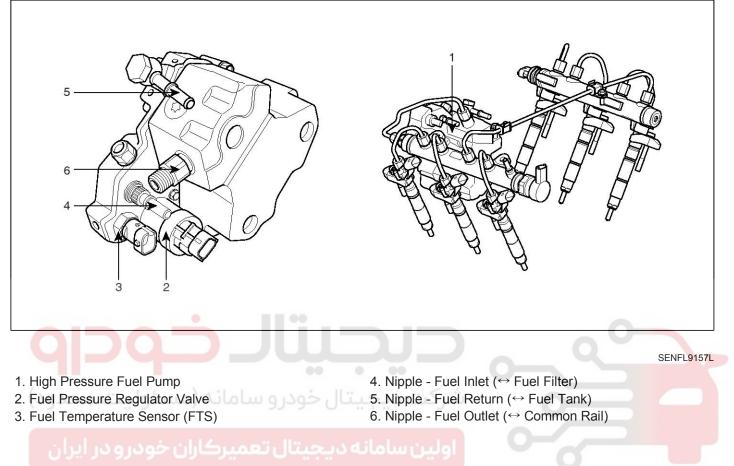
- Turn ignition switch OFF and disconnect the negative (-) battery cable.
- 2. Disconnect the accelerator pedal position sensor connector (A).

Installation

1. Installation is reverse of removal.

Fuel pump installation bolts:

 $8.8 \simeq 13.7 \text{ N.m}$ (0.9 \sim 1.4 kgf.m, 6.5 \sim 10.1 lb-ft)



Fuel Delivery System

FL-143

High Pressure Pump

Component Location

021- 62 99 92 92

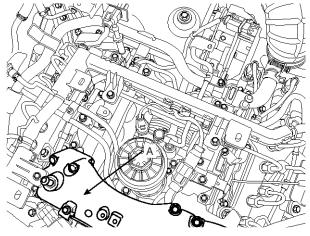
Fuel System

FL-144

Removal

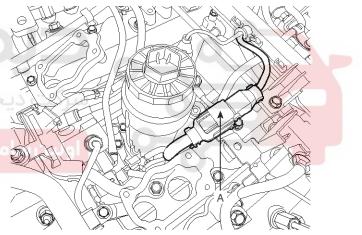
As the Piezo-Injector operates under maximum DC 200V, there may be a risk of an electric shock caused by shorted control line etc. So when repairing the injector or its wiring, disconnect the battery negative (-) terminal from the battery and wait for about 30 seconds.

- Common Rail Fuel Injection System operates with extremely high pressure (approximately 1,600bar), so never perform any work on injection system with engine running or within 30 seconds after the engine stops.
- Keep cleanly the parts and the working area.
- Pay attention to a foreign substance.
- Just before installing injector, tube or hose, remove the protect-cap attached on them.
- Do not remove injector except for special case.
- When installing Injector


- Wash the contact area of the injector and replace the O-ring with a new one.

- Spread oil on the injector O-ring.

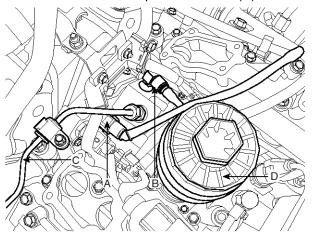
- To protect damage caused by shock, vertically insert the injector into the cylinder head.


- When installing High Pressure Fuel Pipe
 Do not use again the used high pressure fuel pipe.
 - Install the flange nut correctly.

- Turn ignition switch OFF and disconnect the negative (-) battery cable.
- 2. Remove the inlet upper manifold assembly (A).

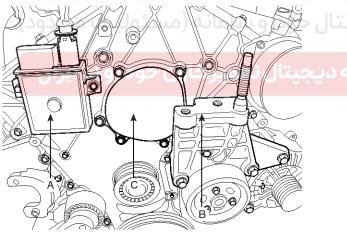
SENFL7200D

3. Disconnect the fuel pressure regulator valve & fuel temperature sensor connector (A).



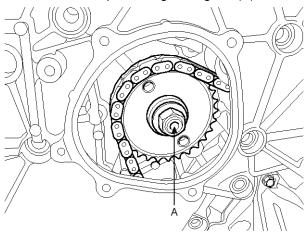
SENFL7201D

021-62999292

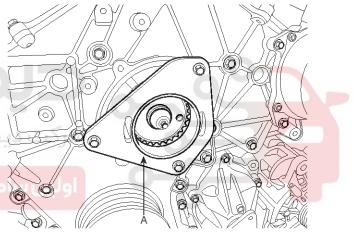

Fuel Delivery System

4. Disconnect the fuel inlet tube quick-connector (A) and the fuel return tube quick-connector (B).

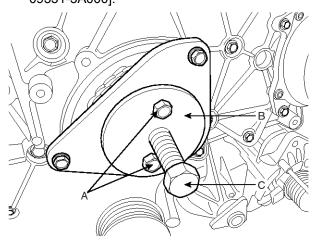
SENFL7202D


- 5. Remove the high pressure fuel pipe (C).
- 6. Remove the engine oil filter (D) (Refer to "LUBRICATION SYSTEM" in EM group).
- 7. Unscrew the three high pressure fuel pump mounting bolts.
- 8. Remove the glow control module (A) and the engine support bracket (B).

SENFL7203D


9. Remove the service cover (C).

10. Remove the sprocket tightening nut (A).


SENFL7204D

11. Install the fixing plate (A) [SST No.: 09331-3A000] on the timing case.

SENFL7205D

12. Install the supporter (B) [SST No.: 09331-3A000] on the sprocket with the bolts (A) [SST No.: 09331-3A000].

SENFL7206D

FL-145

WWW.DIGITALKHODRO.COM

021-62999292

021- 62 99 92 92

FL-146

Fuel System

13. Push the pump shaft from the sprocket with rotating the main bolt (C) [SST No.: 09331-3A000] clockwise, and then remove the high pressure fuel pump from the engine.

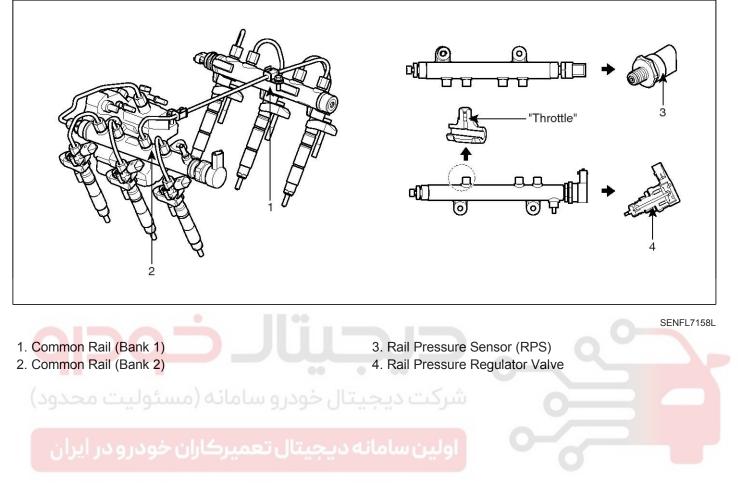
Installation

1. Installation is reverse of removal.

MOTICE

When installing the high pressure fuel pipe, apply the specified tightening torques with the special service tool [SST No.: 09314-3A000].

High pressure fuel pump installation bolts: $19.6 \sim 26.5 \text{ N.m} (2.0 \sim 2.7 \text{ kgf.m}, 14.5 \sim 19.5 \text{ lb-ft})$ High pressure fuel pipe installation nut: $24.5 \sim 28.4 \text{ N.m} (2.5 \sim 2.9 \text{ kgf.m}, 18.1 \sim 21.0 \text{ lb-ft})$


اولین ساما<mark>نه دیجیتال تعمیرکاران خودرو در ایرا</mark>ن

Fuel Delivery System

FL-147

Common Rail

Component Location

FL-148

Removal

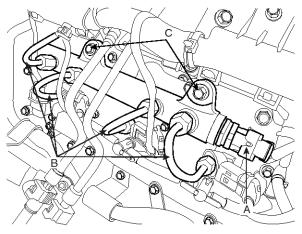
As the Piezo-Injector operates under maximum DC 200V, there may be a risk of an electric shock caused by shorted control line etc. So when repairing the injector or its wiring, disconnect the battery negative (-) terminal from the battery and wait for about 30 seconds.

- Common Rail Fuel Injection System operates with extremely high pressure (approximately 1,600bar), so never perform any work on injection system with engine running or within 30 seconds after the engine stops.
- Keep cleanly the parts and the working area.
- Pay attention to a foreign substance.
- Just before installing injector, tube or hose, remove the protect-cap attached on them.
- Do not remove injector except for special case.
- When installing Injector

- Wash the contact area of the injector and replace the O-ring with a new one.

- Spread oil on the injector O-ring.

- To protect damage caused by shock, vertically insert the injector into the cylinder head.

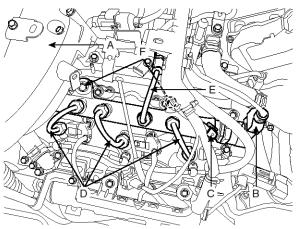

When installing High Pressure Fuel Pipe

- Do not use again the used high pressure fuel pipe.

- Install the flange nut correctly.

[Common Rail (Bank 1)]

- 1. Turn ignition switch OFF and disconnect the negative (-) battery cable.
- 2. Disconnect the rail pressure sensor connector (A).


SENFL7208D

Fuel System

- 3. Remove the high pressure fuel pipes (B).
- 4. Unscrew the mounting bolts (C), and then remove the common rail from the engine.

[Common Rail (Bank 2)]

- Turn ignition switch OFF and disconnect the negative (-) battery cable.
- 2. Remove the inlet upper manifold assembly (A).

SENFL7209D

- 3. Disconnect the rail pressure regulator valve connector (B).
- Disconnect the fuel return tube quick-connector (C).
- 5. Remove the high pressure fuel pipes (D,E).
- 6. Unscrew the mounting bolts (F), and then remove the common rail from the engine.

Installation

1. Installation is reverse of removal.

1. When installing the high pressure fuel pipe, apply the specified tightening torques with the special service tool [SST No.: 09314-3A000].

2. When installing the high pressure fuel pipe connecting the common rail and injector, follow the below procedure.

- 1. Temporarily install the nut on common rail.
- 2. Temporarily install the nut on injector.
- 3. Install the injector side nut.
- 4. Install the common rail side nut.

Common rail installation bolts:

19.6 ~ 26.5 N.m (2.0 ~ 2.7 kgf.m, 14.5 ~ 19.5 lb-ft) **High pressure fuel pipe installation nut:** 24.5 ~ 28.4 N.m (2.5 ~ 2.9 kgf.m, 18.1 ~ 21.0 lb-ft)