Emission Control System

General Information

Description

Components	Function	Remarks
Crankcase Emission System - Positive Crankcase Ventilation (PCV) valve	HC reduction	Variable flow rate type
Evaporative Emission SystemEvaporative emission canisterPurge Control Solenoid Valve (PCSV)	HC reduction HC reduction	Duty control solenoid valve
Exhaust Emission System - MFI system (air-fuel mixture control device) - Three-way catalytic converter	CO, HC, NOx reduction CO, HC, NOx reduction	Heated oxygen sensor feedback type Monolithic type

Specifications

Purge Control Solenoid Valve (PCSV)

 \triangleright Specification

Item	Specification
Coil Resistance (Ω)	16.0Ω [20 [°] C (68 [°] F)]

Tightening Torques

Item	N·m	kgf∙m	lbf-ft
Positive Crankcase Ventilation Valve	7.8 ~ 11.8	0.8 ~ 1.2	5.8 ~ 8.7
Canister band installation nut / bolts	2.9 ~ 5.9	0.3 ~ 0.6	2.2 ~ <mark>4</mark> .3

Troubleshooting

رکاران خوSymptom ایران	Suspect area	Remedy
	Vacuum hose disconnected or damaged	Repair or replace
Engine will not start or hard to start	Malfunction of the Purge Control Solenoid Val- ve	Repair or replace
	Vacuum hose disconnected or damaged	Repair or replace
	Malfunction of the PCV valve	Replace
Rough idle or engine stalls	Malfunction of the evaporative emission canist- er purge system	Check the system; if there is a pro- blem, check related components p- arts
Excessive oil consumption	Positive crankcase ventilation line clogged	Check positive crankcase ventilati- on system

General Information

Component Location [1.4/1.6 DOHC]

- 2. PCV Vlave
- 3. Canister
- 4. Catalytic Converter

SFDEC8200L

021 62 99 92 92

EC-3

EC-4

Emission Control System

1	Purge Control Solenoid Valve (PCSV)	2	Positive Crankcase Ventilation (PCV) Valve
	PCSV		PCV Valve
3	Canister	4	Catalytic Converter
	Canister		Catalytic Converter

General Information

[2.0 DOHC]

2 ণ দল্লত প্ৰদান 21 K 18 ര ٢ з

- 1. Purge Control Solenoid Valve (PCSV)
- 2. PCV Vlave
- 3. Canister
- 4. Catalytic Converter

SFDEC8201L

021 62 99 92 92

EC-5

021 62 99 92 92

EC-6

Emission Control System

1	Purge Control Solenoid Valve (PCSV)	2	Positive Crankcase Ventilation (PCV) Valve
	PCSV		Itter Itter Itter Itter Itter Itter
3	Canister	4	Catalytic Converter
	Canister	ی جربہ الماما	Catalytic Converter

General Information

Schematic Diagram

SHDEC6109L

Emission Control System

Crankcase Emission Control System

Components

[1.4/1.6 DOHC]

SHDEC6110L

Crankcase Emission Control System

EC-9

[2.0 DOHC]

SHDEC6111L

WWW.DIGITALKHODRO.COM

021 62 99 92 92

Inspection

- Disconnect the ventilation hose from the positive crankcase ventilation (PCV) valve. Remove the PCV valve from the rocker cover and reconnect it to the ventilation hose.
- 2. Run the engine at idle and put a finger on the open end of the PCV valve and make sure that intake manifold vacuum can be felt.

The plunger inside the PCV valve will move back and forth.

WWW.DIGITALKHODRO.COM

021 62 99 92 92

Emission Control System

Crankcase Emission Control System

EC-11

Positive Crankcase Ventilation (PCV) Valve

Operation

Removal

1. Disconnect the vacuum hose (A) and remove the PCV valve (B).

[2.0 DOHC]

SFDEC8204L

Emission Control System

SUNEC7105L

EERF600J

Inspection

- 1. Remove the PCV valve.
- 2. Insert a thin stick(A) into the PCV valve(B) from the threaded side to check that the plunger moves.
- 3. If the plunger does not move, the PCV valve is clogged. Clean it or replace.

Installation

Install the PCV valve and tighten to the specified torque.

PCV Valve installation : 7.8 \sim 11.8 N·m (0.8 \sim 1.2 kgf·m, 5.8 \sim 8.7lbf·ft)

اولين سام

Evaporative Emission Control System

Evaporative Emission Control System

Description

Evaporative Emission Control System prevents fuel vapor stored in fuel tank from vaporizing into the atmosphere. When the fuel evaporates in the fuel tank, the vapor passes through vent hoses or tubes to the canister filled with charcoal and the canister temporarily holds the vapor in the charcoal. If ECM determines to draw the gathered vapor into the combustion chambers during certain operating conditions, it will use vacuum in intake manifold to move it.

Canister

Canister is filled with charcoal and absorbs evaporated vapor in fuel tank. The gathered fuel vapor in canister is drawn into the intake manifold by the ECM/PCM when appropriate conditions are set.

Purge Control Solenoid Valve (PCSV)

Purge Control Solenoid Valve (PCSV) is installed in the passage connecting canister and intake manifold. It is a duty type solenoid valve and is operated by ECM/PCM signal. To draw the absorbed vapor into the intake manifold, the ECM/PCM will open the PCSV, otherwise the passage remains closed.

Fuel Filler Cap

A ratchet tightening device on the threaded fuel filler cap reduces the chances of incorrect installation, which would seal the fuel filler. After the gasket on the fuel filler cap and the fill neck flange contact each other, the ratchet produces a loud clicking noise indicating the seal has been set.

Inspection

[System Inspection]

- 1. Disconnect the vacuum hose from the throttle body, and connect a vacuum pump to the vacuum hose.
- Check the following points when the engine is cold [engine coolant temperature 60°C(140°F) or below] and when it is warm [engine coolant temperature 80°C(176°F) or higher].

WHEN ENGINE IS COLD

Engine operating c - ondition	Applied vacu- um	Result
Idling	50 kPa	
3,000 rpm	(7.3 psi)	Vacuum is held

WHEN ENGINE IS WARM

Engine operating c - ondition	Applied vacu- um	Result
Idling	50 kPa (7.3 psi)	Vacuum is held
Within 3 minutes aft- er engine start at 3,0 00 rpm	Try to apply va- cuum	Vacuum is rele- ased
After 3 minutes have passed after engine start at 3,000 rpm	50 kPa (7.3 psi)	Vacuum will be held momentar- ily, after which, it will be releas- ed

Emission Control System

[PCSV Inspection]

When disconnecting the vacuum hose, make an identification mark on it so that it can be reconnected to its original position.

- 1. Disconnect the vacuum hose from the solenoid valve.
- 2. Detach the harness connector.
- 3. Connect a vacuum pump to the nipple which is connected to intake manifold.
- 4. Apply vacuum and check when voltage is applied to the PCSV and when the voltage is discontinued.

Battery voltage	Normal condition
When applied	Vacuum is released
When discontinued	Vacuum is maintained

5. Measure the resistance between the terminals of the solenoid valve.

PCSV coil resistance($\Omega)$: 16.0 Ω at 20 $^\circ C$ (68 $^\circ F)$

Evaporative Emission Control System

EC-15

Canister

Removal

- 1. Remove the fuel tank (Refer to "FUEL TANK" in FL group).
- 2. Disconnect the vacuum hoses (A,B,C).

Installation

Install the canister according to the reverse order of "REMOVAL" procedure.

Canister band installation nut/bolts : 2.9 \sim 5.9N·m (0.3 \sim 0.6kgf·m, 2.2 \sim 4.3 lbf·ft)

SFDEC8206L

3. Remove the band (D) and remove the canister assembly from the fuel tank.

Inspection

- 1. Look for loose connections, sharp bends or damage to the fuel vapor lines.
- 2. Look for distortion, cracks or fuel damage.
- 3. After removing the canister, inspect for cracks, damage or saturated canister.

SHDEC6115L

Emission Control System

Fuel Filler Cap

Description

A ratchet tightening device on the threaded fuel filler cap reduces the chances of incorrect installation, which would seal the fuel filler. After the gasket on the fuel filler cap and the filler neck flange contact each other, the ratchet produces a loud clicking noise indicating the seal has been set.

LEGE015A

Exhaust Emission Control System

Description

Exhaust emissions (CO, HC, NOx) are controlled by a combination of engine modifications and the addition of special control components.

Modifications to the combustion chamber, intake manifold, camshaft and ignition system form the basic control system.

These items have been integrated into a highly effective system which controls exhaust emissions while maintaining good driveability and fuel economy.

Air/Fuel Mixture Control System [Multiport Fuel Injection (MFI) System]

The MFI system is a system which uses the signals from the heated oxygen sensor to activate and control the injector installed in the manifold for each cylinder, thus precisely regulating the air/fuel mixture ratio and reducing emissions.

This in turn allows the engine to produce exhaust gases of the proper composition to permit the use of a three way catalyst. The three way catalyst is designed to convert the three pollutants (1) hydrocarbons (HC), (2) carbon monoxide (CO), and (3) oxides of nitrogen (NOx) into harmless substances. There are two operating modes in the MFI system.

- 1. Open Loop air/fuel ratio is controlled by information programmed into the ECM.
- 2. Closed Loop air/fuel ratio is adjusted by the ECM based on information supplied by the oxygen sensor.

EC-17

Emission Control System

CVVT (Continuously Variable Valve Timing) System

Description

The CVVT (Continuously Variable Valve Timing) which is
installed on the exhaust camshaft controls intake valve
open and close timing in order to improve engine
performance.This CVVT system improves fuel efficiency and reduces
NOx emissions at all levels of engine speed, vehicle
speed, and engine load by EGR effect because of valve
over-lap optimization.The intake valve timing is optimized by CVVT system
depending on engine rpm.The CVVT changes the phase of the intake camshaft via
oil pressure.It changes the intake valve timing continuously.It changes the intake valve timing continuously.

Driving Condition	Intake Valve Timing	Effect
Light load (1)	Retard	Stable combustion
Part load (2)	Advance	Enhanced fuel economy and exhaust emissions
High load& Low rpm (3)	Advance	Enhanced torque
High load& High rpm (4)	Retard	Enhanced Power

LEIF001Q

Exhaust Emission Control System

EC-19

Operation

The CVVT system makes continuous intake valve timing changes based on operating conditions.

Intake valve timing is optimized to allow the engine to produce maximum power.

Cam angle is advanced to obtain the EGR effect and reduce pumping loss. The intake valve is closed quickly to reduce the entry of the air/fuel mixture into the intake port and improve the changing effect.

Reduces the cam advance at idle, stabilizes combustion, and reduces engine speed.

If a malfunction occurs, the CVVT system control is disabled and the valve timing is fixed at the fully retarded position.

UEBG014A

021 62 99 92 92

Emission Control System

EC-20

- 1. The above figure shows the relative operation structures of the housing vane to the rotor vane.
- 2. If the CVVT is held a certain control angle, to hold this state, oil is replenished as much as oil leaks from the oil pump.

The OCV (Oil-flow Control Valve) spool location at this time is as follows.

Oil pump \rightarrow Advance oil chamber (Little by little open the inflow side to the advance oil chamber) \rightarrow Almost close the drain side

Be sure there might be a difference in the position according to the engine running state (rpm, oil temperature, and oil pressure).

حیجیتال خود و سامانه (مسئولیت محدود)

اولین سامانه دیجیتال تعمیرکاران خودرو در ایران